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Executive Summary

The performance of IoT systems and applications is strongly a�ected by two key components:
the surrounding environment and the hardware platform. Denoting N as the performance of
a network, E as the behaviour of the environment and H as the behaviour of the hardware
platform, the relationship among the network performance, the environment, and the hardware
platform is given by f : E(e),H(h) → N . While in Deliverable D-1.1 [16] our focus was on
modelling the environment and the platform (i.e., our goal was to formally derive the behaviour
of the environment E and of the hardware platform H), in this deliverable our focus is on the
model parameters e and h.
Our goal is twofold. First, we aim to learn the model parameters e and h for a certain

deployment site. We presents tools to gather temperature, interference, signal strength, and
timing data at a given deployment location using o�-the-shelf WSAN nodes. In some cases,
especially for hardware platform parameters, these tools are run in specialized testbed infras-
tructures (such as the one designed in WP4 [5]) allowing us to carry out repeatable experiments
in a controllable environment and to signi�cantly reduce the experimentation time. We show
examples of how to use these tools to gather datasets from which the the model parameters e
and h are learnt, carefully describing each step.
Second, we derive bounding and aggregation methods for each model. This is a necessary

step as the utility of a model is often low without model bounds. For instance knowing the
average clock drift of one particular platform provides little use without worst and best case
bounds to con�gure guard times. Aggregation is also fundamental for simplifying the use of
models. Considering models produced by each mote individually would add an unnecessary
complexity, and combining models captured by di�erent nodes into a single model instance can
drastically simplify their use.
This document provides a detailed descriptions of these two aspects, and details on the

learning of model parameters for temperature, interference, signal strength, and timing data,
respectively.

Copyright © 2013 RELYonIT consortium: all rights reserved page 7



1 Introduction

In Deliverable D-1.1 [16] we have developed environmental and platform models that can be
used to predict the performance of sensor networks and to automatically set an optimal protocol
con�guration. However, the parameters of these models may di�er from one environment to
another or between di�erent platforms. Obtaining the correct parameter values to characterize
a certain deployment environment or platform is a non-trivial task. For environments, human
domain experts with su�cient experience and deep knowledge of the environment may be able
to estimate those parameters, but this requires substantial e�ort and needs to be veri�ed. For
platforms, values in data-sheet may provide some insights but detail is often insu�cient and
have little consideration of environmental conditions.
This deliverable presents work towards devising algorithms and tools to learn these param-

eters in order to support domain experts. The idea is to install a cost-e�cient measurement
system in the target deployment environment prior to the actual deployment of the WSAN.
These measurement systems consist of a small number of WSAN nodes that are installed for
a short amount of time to sample the environmental and platform parameters of interest. The
data collected can then be used to compute the model parameters from these observations. In
some cases, particularly for platform parameters, the tools can be run in the lab under con-
trolled conditions to reduce the time needed for data collection. Tools will be developed to look
at these speci�c aspects: temperature, interference, RSSI, and system timing.
Not only is data collection important, but also model bounding and aggregation. The utility

of a model is often low without model bounds, for instance knowing the average clock drift
of one particular platform provides little use without worst and best case bounds to con�gure
guard times. Aggregation is also important for simplifying the use of models. Considering
models produced by each mote individually adds an unnecessary complexity and combining
models captured by di�erent nodes into a single model instance can drastically ease their use.
Chapter two presents a summary in addition to re�nements of the models presented in

deliverable D1.1 [16]. Chapter three presents a study on temperature showing how a tool can
be constructed to collect deployment temperature data and how to instantiate the model using
real-deployment data. Chapter four focuses on radio interferences examining how interference
data can be collected and how the radio interference environmental model can be instantiated.
Chapters �ve and sifx look at the platform aspects of received signal strength and timing
respectively, presenting a data collection tool and an investigation into model instantiation,
aggregation and bounding. The �nal chapter presents our conclusions for this deliverable.

Copyright © 2013 RELYonIT consortium: all rights reserved page 8



2 Environmental and Platform Models

The performance of sensor networks is determined by two key components: the environment
and the hardware platform. In turn, the behaviour of these two components (environment
and platform) is dictated by a set of parameters. Formally, denoting N as the performance
of a network, E as the behaviour of the environment and H as the behaviour of the hardware
platform, the relationship among the network performance, the environment and the hardware
platform is given by:

f : E(e),H(h)→ N (2.1)

where f is the protocol model that we develop as part of WP2. In other words, the perfor-
mance of the sensor network N is a function of the environment E and the hardware platform
H.
Our goal is twofold. First, we want to learn in a simple manner the model parameters e

and h (modelling E and H was the focus of Deliverable D-1.1 [16]). Second, based on these
parameters, we want to provide bounds on the performance of the network.
In the last four months (since D-1.1), we have focused mainly on temperature e�ects (as op-

posed to interference e�ects) for the same reason provided on D-1.1: scienti�c novelty. Studying
the e�ect of interference is an active research area in the community, while temperature has
received much lesser attention in spite of the (potentially) dramatic changes that it can cause
on the network performance, as described in D-1.1 [16].
In this chapter we summarise the key �ndings from Deliverable D-1.1 (Environmental and

Platform Models) and provide re�nements which have been made to the models over the last
four months.

2.1 Environmental Models

In D-1.1 [16] we have identi�ed two environmental aspects that can have a signi�cant in�uence
on the performance of IoT systems and applications: temperature and radio interference. The
following two subsections will present a recap of our initial �ndings presented in D-1.1, plus
the progress made on top of them.

2.1.1 Temperature

Thermal properties. In deliverable D-1.1, we described the behaviour of the environment E
in terms of four thermal properties (models): hotness, periodicity, change of rate, and maximum
and minimum temperature range [16]. We now provide a brief summary of these properties.

Hotness. Given that temperature has a detrimental e�ect on the transmission range and
timing accuracy of a node, it is important to characterise the hotness of a node. Given the

Copyright © 2013 RELYonIT consortium: all rights reserved page 9
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probability mass function of temperature pi(t), the hotness of a node Hi can be de�ned by the
expectation:

Hi =
∑
t

t ∗ pi(t) (2.2)

Periodicity. Considering that temperature pro�les usually follow periodic patterns1, it is
important to identify the periodicity of these patterns to exploit the times of the day where the
temperature is the lowest (because the performance of the network is better at these �colder�
times). Denoting fi and gi as the time series of the temperature observed by node i at two
di�erent days, we use cross correlation functions to quantify the periodicity of a node Pi:

(fi ? gi)[n] =
∞∑

m=−∞
fi[m]gi[n+m] (2.3)

Pi = max
n

(fi ? gi)[n] (2.4)

Change of Rate. One of the aims of our consortium is to design protocols that can adapt to
environmental changes. To design the appropriate mechanism we need to quantify how fast the
environment changes, because the network properties will change at the same rate. To capture
the maximum rate of change on a node i, we identify the steepest slope of the temperature
series fi:

Ri = max
t

(fi(t+ ∆t)− fi(t)) (2.5)

Max/min Temperature Range. Arguably one of the most important characteristics of the
environment to be modelled are the maximum and minimum temperatures recorded on each
node i, because they bound the performance of the network. Given a trace fi recorded at a
node i, these properties are easily obtained:

(maxti,minti) = (max{fi},min{fi}) (2.6)

The progress made for this deliverable, in the realm of temperature e�ects, can be described
as follows. In deliverable D-1.1, we modelled the relevant properties of the nodes (hotness,
periodicity, rate of change and max/min range) given the behaviour of the environment E
(temperature traces). In this deliverable, we investigate the model parameters e required to
(re)create the environment E itself.

Identifying the model parameters. Using thermodynamic equations, we derived a model
suitable to create temperature pro�les for nodes. We focus on outdoor deployments where IR
(infrared) radiation from the sun and air temperature are the most signi�cant factors. In
essence, objects heat up by absorbing solar radiation and cool down by constantly releasing

1The most obvious periodic pattern is the thermal change between day and night. Other less obvious changes
are seasonal changes of temperature or changes caused by obstacles such as buildings or trees that cause
shades at speci�c times of the day.
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Figure 2.1: Model-based temperature pro�le generation.

energy to their surrounding. The balance between these processes determines the object tem-
perature.
Before describing the theory behind the model, we provide a pictorial representation in

Fig. 2.1. The model has three basic steps. First, we model the impact of sun radiation. This
is done by assuming a clear sky, where the object absorbs the maximum possible IR radiation
hitting its surface (top diagram in Fig. 2.1). Second, we model the impact of events blocking
sun radiation, such as clouds and buildings. These events decrease the temperature of the
object (middle diagram in Fig. 2.1). Finally, we put these two models together to recreate the
temperature pro�le of a node, based on a simple set of model parameters e (bottom diagram
in Fig. 2.1).

Energy absorption and dissipation. An object that is exposed to the sun, absorbs energy
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according to:

Ein = SαA∆t, (2.7)

where S is the solar radiation, α is the attenuation of the solar radiation, A is the exposed
area of the object and ∆t is the amount of time in which the object was exposed to the solar
radiation. On the other hand, objects release energy according to:

Eout = sT 4A∆t, (2.8)

where s is the Boltzmann constant and T is the temperature of the object in Kelvin.

Energy balance. Considering the energy absorption and energy dissipation of an object,
its change of temperature ∆T is determined by the heat energy equation: H = Cpm∆T =
Ein −Eout, where Cp is the speci�c heat of the object and m its mass. The temperature of an
object cannot be less than air temperature at any given time t (T airt ). Hence, at time t+ ∆t,
the object temperature is given by:

Tt+∆t = min{ Tt +
(Stαt − sT 4)

Cpm
A∆t, T airt } (2.9)

Considering a standard mote with parameters m = 50 grams, Cp = 0.5 J
gC , A = 20 cm2;

the model only requires the sun radiation St, the air temperature T airt and the attenuation αt
(0 ≤ αt ≤ 1).

Sun radiation and cloud obstruction. In the absence of any obstructions, the sun radiation
throughout the day can be modelled by a Gaussian-like shape [11]:

St = Smax
max{N (0,σ)}

1√
2πσ

exp−(t−δ)2/2σ2

= Smax exp−(t−δ)2/2σ2
, 0 ≤ t ≤ 2δ

(2.10)

where Smax is the maximum sun radiation during the day, and t = 0 and t = 2δ represent the
00 hrs and the 24 hrs. The number of hours with sunlight (length of day) can be �ne-tuned with
σ and δ. To further simplify Eq. 2.9, instead of considering the air temperature throughout
the day (T airt ), we use only the minimum temperature in the day (i.e., the night temperature
Tmin).
Hence, the only information that we need to model is the maximum radiation and minimum

air temperature (datasets about a given location are typically available from satellites and
meteorological stations).
Few locations, however, receive constant sun radiation throughout the day. In most scenarios,

clouds block the sun radiation and cause sudden variations of temperature. The length of clouds
and the length of the clear sky between clouds are known to have exponential distributions
λ exp−λx, x ≥ 0, with 1

λ representing the average cloud (or inter-cloud) length [13]. Denoting
−→α as an attenuation vector where all elements are α and its length is given by the exponentially
random length of a cloud. And denoting

−→
1 as a clear-sky vector where all elements are 1 (i.e.,

α = 1) and its length is equal to the random length of an inter-cloud period; the variable αt in
Eq. 2.9 is the tth element of the vector:
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−→v = {−→α1,
−→
11, . . . ,

−→αi,
−→
1i , . . .}. (2.11)

At each t in Eq. 2.9, the tth element is used to capture the amount of sun radiation attenuated
during the respective period ∆t. The shade of events that are speci�c to the scenario of interest
(trees, buildings, etc), can be included in −→v by inserting attenuation elements (α) in the vector.
The model allows the user to test a wide range of scenarios. The user can test the worst-case

temperature with clear skies, generate shades of any length at any time (to test temperature
gradients), and generate random instances for each node by varying the model parameters. The
model can be easily coded using any programming or scripting language, we use Matlab. To
compute a temperature value at time t, Eq. 2.9 is evaluated for the respective value of ∆t.

2.1.2 Radio Interference

In deliverable D-1.1, we have described models for capturing radio interference. In particular
we have illustrated how the interference can be modelled using the Cumulative Distribution
Function (CDF) of idle and busy periods. We have shown that this approach is suitable for
low-power wireless networks as knowledge on distributions of idle and busy periods can be
exploited to design interference-aware protocols. This approach has also the key advantage of
being usable with resource-constrained wireless sensor nodes: as we will discuss in Section 4.1,
these distributions can be easily derived by performing RSSI sampling on o�-the-shelf motes.
We now discuss the importance of knowing these CDF distributions (for a longer discussion,
please refer to D-1.1 [16]) and we describe how these distributions can be modelled.

The importance of the CDF of idle and busy periods. The success of a packet
transmission is strongly correlated to the presence of radio interference in the environment.
Transmissions can indeed only succeed if they occur when no other device (generating noise at
a higher power) is active. To construct transmission schedules and con�gure protocol primitives
such as back-o� timing it is necessary to have knowledge about the duration of busy and idle
periods. For example, a protocol would use short CCA back-o� times and short payloads in
an environment where interference occurs in short burst with short idle periods. Long CCA
back-o� times might instead be advisable in an environment where interference occurs in long
bursts with large idle periods in order to minimise the radio activity.
Denoting pi(i) as the Probability Density Function (PDF) of the idle periods formed by

the interference pattern, a protocol could for example select the optimal payload length by
computing the probability of encountering an idle period of length i during transmission:

pidle_period(i) =
ipi(i)∑∞
i=1 ipi(i)

(2.12)

Similarly, denoting pb(i) as the PDF of the busy periods formed by the interference pattern,
a protocol could for example select the optimal back-o� time for clear channel assessment by
knowing the probability of selecting a busy period of length i during transmission:

pbusy_period(i) =
ipb(i)∑∞
i=1 ipb(i)

(2.13)
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The Probability Density Functions (PDF) pi(i) and pb(i) can also be expressed as Cumu-
lative Distribution Functions (CDF) Pi(i) and Pb(i), with Pi(i) =

∫ i
−∞pi(x) dx and Pb(i) =∫ i

−∞pb(x) dx. We use the CDF for our modeling approach discussed next.

Modeling the CDF of idle and busy periods. The distribution of idle and busy periods
is dependent on the type of devices that are generating interference. Some devices, such as
microwave ovens, generate periodic interference patterns with relatively long idle periods, while
others, such as Wi-Fi stations, generate interference patterns with short idle periods of a highly
variable length. When several interfering sources are present, interference occurs continuously
and independently at a constant average rate. In these cases it is reasonable to model the CDF
as an exponential distribution. Thus we use, when possible, the following models to capture
idle and busy CDF:

Pi(i) =

{
1− e−λ·i i ≥ 0

0 i < 0

Pb(i) =

{
1− e−λ·i i ≥ 0

0 i < 0
(2.14)

However, there are cases in which the use of an exponential distribution is not appropriate.
This applies for example to the interference generated by microwave ovens, as we will describe
in detail in Section 4.1). In this case a generic CDF model cannot be used and we instead
directly measure and capture the CDF in an empirical way.

2.2 Platform Models

In deliverable D-1.1 we identi�ed that the Receiver Signal Strength Indicator (RSSI) and the
timing of the system can be signi�cantly a�ected by temperature changes. The following two
subsections will summarize these platform aspects.

2.2.1 Receiver Signal Strength Indicator

As we have shown in [6], a raise in temperature can drastically reduce the Signal-to-Noise Ratio
(SNR). A lower SNR means a lower link quality and a shorter radio link: a temperature change
of 50◦C is enough to reduce the SNR by more than 6 dB, which can change the packet reception
rate (PRR) of a link from 100% to 0%. This may translate not only into a lower throughput,
but also into a higher delay or even into a network partitioning.

Impact of Temperature on SNR. In deliverable D-1.1, we modelled the e�ect of tem-
perature on SNR. Denoting PL as the path loss between a transmitter-receiver pair, Pt as the
transmission power, Pr as the received power, and Pn as the noise �oor at the receiver, the
SNR is known to be:

SNR(dB) = Pt − PL− Pn
= (Pt − Pn)− (Pt − Pr)

(2.15)
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We modelled three main e�ects of increasing temperature on the signal strength of radio
transmissions in Eq. 2.15. These e�ects where shown in deliverable D-1.1 with empirical mea-
surements and they are (i) decrease in the transmitted power, (ii) decrease in the received
power, and (iii) decrease in the noise �oor.

A First-Order Model [6]. Denoting α, β, γ as constants with units dB/K, and Tt, Tr as
the temperature in Kelvin of transmitter and receiver, the e�ect of temperature on SNR can
be de�ned as:

SNR = (Pt − α∆Tt)− (PL+ β∆Tr)

−(Pn − γ∆Tr + 10 log10(1 + ∆Tr
Tr

))

= Pt − PL− Pn − α∆Tt
−(β − γ)∆Tr − 10 log10(1 + ∆Tr

Tr
)

(2.16)

The proportional relation between ∆T and the constants α (e�ect on transmitted power), β
(e�ect on received power) and γ (e�ect on noise �oor) is based on the empirical observations
made in deliverable D-1.1. The term 10 log10(1 + ∆Tr

Tr
) is derived analytically from the well-

known thermal equation. Changes in temperature have a higher impact on the transmitted and
received powers (linear relation of α and β), than on the thermal noise (logarithmic relation).
And, to some extent it is counter-intuitive that a higher temperature decreases the noise �oor
(negative sign of γ). This e�ect was also observed by Bannister, and he hypothesizes that it is
due to the losses in the signal ampli�er [2] [1]. That is, a higher temperature not only reduces
the gain of the signal but also the gain of the noise, and hence, the received signal strength
(RSSI) is lower for both.
The accuracy of our model depends on identifying the right values for α, β and γ. In our case,

these parameters are given by the slopes of the linear trends observed in our empirical results.
These parameters are platform dependant, and hence require a systematic and �ne-grained
evaluation.

2.2.2 System Timing

In Deliverable D-1.1 we derived two models to represent the temperature e�ects on timing, the
�rst looked at RC-Clock type whilst the second on RT-Clock type.

RC-Clock Model. An RC-clock uses resistive and capacitive components whose pro�les
alter as temperature changes. These pro�le variations are linear and can be modelled using
Equation 2.17. The circuit designed to have a frequency f0 close to the target frequency at
room temperature T0. A1 is a temperature coe�cient with unit %/ ◦C.

f(T )/f0 = A1.(T − T0) (2.17)

RT-Clock Model. The outlined behaviour of di�erent crystal cuts can be modelled using
Equation 2.18. f0 is the frequency of the RT-clock at room temperature T0. f(T ) is the RT-
clock frequency at temperature T . A1 is a temperature coe�cient with unit %/ ◦C. A2 and A3

are temperature coe�cients with unit %/ ◦C2 and %/ ◦C3.

f(T )/f0 = A1.(T − T0) +A2.(T − T0)2 +A3.(T − T0)3 (2.18)
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3 Environmental: Temperature

Temperature has been recognized as one of the key environmental aspects that can signi�cantly
a�ect IoT systems and applications. In this chapter we present tools that can be used to measure
temperature at a deployment site at each node location. This temperature dataset will augment
available meteorological information when instantiating the temperature model. This model
will also be used (together with platform models) to aid o�ine protocol selection in WP3.

3.1 Collecting Temperature Data with Motes

Measuring temperature on motes is a simple exercise and wireless sensor nodes have been used
to measure temperature for years. Most o�-the-shelf wireless sensor nodes have embedded tem-
perature reading capabilities so that one can periodically read temperature. One needs however
to make sure that the temperature sensors used have been previously calibrated and that they
have a reasonable accuracy (in the order of ≈ 0.5◦C). Su�cient sample points must also be
recorded such that the variations in temperature can be accurately observed. Temperature
typically changes slowly, hence measurements points taken every few seconds give a su�ciently
high accuracy.
We develop an application that reads temperature using the Contiki operating system [8].

Every few seconds, the application samples temperature and outputs the recorded value in one
out of three possible ways. Temperature can be outputted via RS232 to a PC, but this would
require that every mote in the network is actually connected to a central machine. A second
approach consists in storing the temperature readings into �ash memory so that they can be
read out during reprogramming. A third option is to transmit temperature to a central sink
using wireless communication.
Instead of developing an application just to record temperature, it is advisable to collect

temperature while collecting as well other environmental or platform datasets, such as timing
or RSSI. Most of the applications evaluated within RELYonIT, indeed, measure temperature
whilst measuring application speci�c data.

3.2 Instantiating the Temperature Model

In this section, the temperature model described in Section 2.1.1 will be instantiated. The
focus of our model will be on bounding the temperature pattern for all nodes.

Motivation to obtain bounds. Figure 3.1 shows an example of temperature pro�les
collected using 16 o�-the-shelf wireless sensor nodes deployed in Uppsala, Sweden [14] (each
blue curve represents the temperature pro�le of a di�erent node).
We can observe that even if nodes are in close proximity of each other (a few meters in this

case), their temperature pro�les can be vastly di�erent. Figure 3.2 depicts the temperature
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Figure 3.1: Temperature pro�les over the course of a day of 16 nodes deployed in an outdoor
setting (blue curves), and maximum temperature pro�le obtained with the model
presented in Sect. 2.1.1 (red dashed curve).
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Figure 3.2: The temperature pro�le of nodes can be highly di�erent even if nodes are in prox-
imity of each other. Our model allows us to bound the temperature pattern over
all nodes.

density of the �hottest� and �coldest� nodes in this deployment, and we can observe that the
range of temperature varies signi�cantly.
Considering that high temperatures can have a detrimental e�ect on network operation, in

several instances it is important to consider the worst case scenario, i.e., an upper bound of the
highest possible temperature. For example, if we only deploy a few test nodes that, by chance,
happen to be located on the �coldest" areas of the deployment, protocols can fail if parts of the
full-blown deployment are exposed to higher temperatures.

Obtaining the bounds. To avoid these undesirable events, we can use our temperature
model. The latter only requires two parameters to obtain a clear sky temperature pro�le: (i)
the maximum sun radiation which usually occurs at noon, and (ii) the minimum temperature
that occurs during the night (which usually remains stable, as we can see in Figure 3.1 between
23:00 and 03:00).
In the case of the example shown in Figures 3.1 and 3.2, the traces were collected in Uppsala

during August. During this period of the year, the maximum radiation is 800 W/m2, whereas
the minimum temperature during the night is 10◦C. Inserting these values on Equations 2.9
and 2.10, respectively, we obtain the dashed red-curve presented in Figure 3.1. As we can
observe, the model bounds the temperature patterns of all nodes in the network. Without the
model, in this particular deployment, the error on the maximum expected temperature could
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have ranged range from ≈40◦C, if the �coldest� node would have been used as reference, to
≈20◦C, if the �hottest� node would have been selected instead. As described in Deliverable
D-1.1 [16], such di�erences in temperature can a�ect signi�cantly the operation of a network.

Trace-based modelling. In the event that temperature traces are available, but no me-
teorological information is accessible (i.e., no sun radiation), the model could still be used to
estimate the Gaussian curve bounding the curves under consideration. For example, given four
temperature traces among the 16 presented in Figure 3.1, we could search (iteratively) the
parameters of the model that bound the traces in the most accurate manner. This basic model
could be used to generate other random traces. It is important to remark that this method is
not ideal, because it would likely create an arti�cially lower bound. For example, the bound
obtained if the four hottest traces are chosen would be di�erent from the bound obtained if the
four coldest traces are selected. Therefore, this method should be used as a last resort.
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4 Environmental: Radio Interference

4.1 Measuring Interference

To get an overview of spectrum usage and to select an optimal radio channel, one typically car-
ries out detailed interference measurement prior deployment. However, as interference pattern
may change over time, one needs to verify at runtime that the environment did not change sig-
ni�cantly (runtime assurance). It may be hence necessary to repeat interference measurements
periodically within a deployment. To achieve this goal, it would be optimal to let sensor nodes
carry out the interference measurements (this avoids the need for extra-hardware). There are
two approaches to measure interference: one is to rely on passive sampling, whilst the second
one exploits active probing [7]. For this deliverable, we exploit passive sampling. In the next
paragraphs we discuss how to let an o�-the-shelf sensor node carry out interference measure-
ments with a su�ciently high sampling rate. Thereafter we illustrate how the collected datasets
are used to instantiate the interference model presented in Section 2.1.2. Particular attention is
given to capturing Wi-Fi tra�c, as we consider this type of interference to be the most common
interfering source in typical deployments.

4.1.1 Measurement Capabilities of O�-The-Shelf Sensor Nodes

Most o�-the-shelf radios (e.g., the Texas Instruments CC2420 or CC1020 transceivers) provide
hardware link quality metrics such as the Received Signal Strength Indicator (RSSI) and the
Link Quality Indicator (LQI). These metrics provide information on signal strength and chip
error rate upon packet reception, but are not designed for precise interference measurements.
These metrics provide information that is limited to the instant at which a packet has been
received. However, for proper interference measurements such single measurement points in
time are not useful and a method is required to provide continuous measurements over long
time periods. Fortunately, modern transceivers provide the capability to read RSSI values also
in absence of packet receptions. These �RSSI noise �oor� measurements taken in absence of
packet transmissions can be used to quantify the level of interference at a given node. To get an
accurate understanding of the ongoing interference, however, RSSI values need to be sampled
at a high rate.

4.1.2 Required Sampling Rates

To detect short transmission periods such as the ones generated by Wi-Fi devices we need to
achieve high sampling rates. This is a challanging task when using resource-constrained wireless
sensor nodes. Hauer et al. [9, 10] have shown that 50-60 kHz is a frequency su�ciently high
to identify the short instants in which the radio medium is idle due to the Inter-Frame Spaces
(IFS) between 802.11 b/g packets. Hence, we follow the approach used in [3, 4], and perform a
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high-speed sampling of the RSSI register on Maxfor MTM-CM5000MSP1 by boosting the CPU
speed, optimizing the SPI operations, as well as by bu�ering and compressing the RSSI noise
�oor readings using Run-Length Encoding (RLE). Although the achievable 50 kHz sampling
rate is su�cient to detect IEEE 802.11b frames, it may not be enough to capture all 802.11g/n
frames (the minimum size of a Wi-Fi packet is 38 bytes, and the maximum speed of Wi-Fi
transmissions is 11, 54, and 150 Mbit/s for 802.11b/g/n standards, respectively). However,
since most Wi-Fi frames are data frames and typically contain higher layer headers, and since
the IEEE 802.11n standard uses large PDUs to reduce preamble overhead [15], we can still
capture a signi�cant fraction of the Wi-Fi tra�c [3] using this approach.

4.1.3 Sampling Error Detection

When pushing the performance of common nodes to the edge, we have to make sure to obtain
meaningful RSSI readings. Boano et al. [3] have highlighted that RSSI noise �oor readings
captured at high sampling rates may return values that are signi�cantly below the sensitivity
threshold of the radio in three speci�c scenarios, namely: (i) when a narrow unmodulated
carrier is transmitted, (ii) when microwave ovens are switched on, and (iii) in the presence
of Bluetooth transmissions. The problem occurs due to the saturation of the Intermediate
Frequency (IF) ampli�er chain. They have indeed observed that maximum gain is used in the
Variable Gain Ampli�er (VGA) when incorrect RSSI readings are obtained.
To linearise the radio response for an arbitrary noise signal and hence avoid wrong RSSI

readings, we activate the peak detectors in-between the ampli�er stages so that their output
is used by the AGC algorithm to compute the required gain. The latter is attained with VGA
stages and the system switches in and out �xed gain stages as needed. In the CC2420, the peak
detectors are controlled by the AGCTST1 register, and can be con�gured as follows:

unsigned temp;

CC2420_READ_REG(CC2420_AGCTST1, temp);

CC2420_WRITE_REG(CC2420_AGCTST1,

(temp + (1 << 8) + (1 << 13)));

4.1.4 Lab and Deployment Based Interference Measurement

To derive the CDF of idle and busy periods, we build a Contiki application that carries out
RSSI sampling as described previously and computes statistics on the idle and busy periods
on a speci�ed channel until a set amount of RSSI samples R is collected (in our application
we use R = 100.000.000 samples). We make sure every interrupt is disabled and that no other
process can interfere with our operations since we need to sample at the highest possible rate.
This way, we achieve a sampling rate of one RSSI value approximately every 24 µs.
We de�ne a RSSI threshold RThr de�ning whether a channel is idle or busy (RSSI values

above RThr identify a busy channel, RSSI values below RThr identify an idle channel) and count
how many consecutive RSSI readings fall above or below such threshold. We store the number

1We use Maxfor MTM-CM5000MSP nodes for our interference experiments. This node type is a typical sensor
node with limitations and capabilities found on most o�-the-shelf wireless sensor nodes.
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of consecutive RSSI readings in which a channel remained idle or busy into two arrays Aidle[i]
and Abusy[i], and as soon as the current channel state (idle, busy) di�ers from the previous one,
we increment the corresponding array �eld. Because of the limited memory constraints of the
nodes, we truncate the maximum duration of an idle or busy period to 125 ms.

1 0, 50

2 50, 175

3 175, 350

4 350, 500

5 500, 650

6 650, 800

7 800, 1000

8 1000, 1500

9 1500, 2250

10 2250, 3000

11 3000, 4000

12 4000, 5500

13 5500, 7000

14 7000, 8500

15 8500, 10000

16 10000, 12000

17 12000, 14000

18 14000, 17000

19 17000, 20000

20 20000, 26000

21 26000, 32000

22 32000, 50000

23 50000, 75000

24 75000, 125000

Listing 4.1: Length of timeslots.

In our implementation, the �rst slot contains the idle or busy periods of duration between 0
and 50 µs, the second slot the idle or busy periods of duration between 50 and 175 µs, as shown
in Listing 4.1. Also in this case, we truncate the maximum duration of an idle or busy period
to 125 ms. The discretization of time is necessary due to the constrained memory resources
of the sensor nodes. As we need to achieve a fast sampling rate, the use of external �ash
memory or USB backchannel is not a suitable option, and in order to quickly store the number
of consecutive samples in the arrays, a lookup table is used.

4.2 Interference Types

When neither interference nor IEEE 802.15.4 communications are present, the measurement of
the RSSI noise �oor typically returns values in the proximity of the radio sensitivity threshold
(e.g., in the range [−100,−94] dBm for the CC2420 radio).
In the presence of IEEE 802.15.4 communications, the fast RSSI sampling returns a stable

value corresponding to the strength and the length of the transmitted packet (Figure 4.1(a)). As
packets have a constrained maximum payload size of 127 bytes according to the 802.15.4 PHY
standard, a packet transmission at 250 Kbit/sec would not last more than 4.3 ms.
When other devices operating in the same frequency band of wireless sensor networks are

active, bursts of interference signals (busy periods) alternate with instants in which the channel
is clear (idle periods). The strength of the interference signals and the duration of idle and
busy periods depend on the interfering source and on the speci�c context. For example, the
interference patterns generated by Wi-Fi transmissions depend on the number of active users
and their activities, as well as on the tra�c conditions in the backbone. Figure 4.1(b) shows
the outcome of fast RSSI sampling in the presence of heavy Wi-Fi interference (caused by a �le
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Figure 4.1: RSSI values measured using o�-the-shelf wireless sensor nodes operating in the 2.4
GHz ISM band. Please notice the di�erent scale of the x-axis [4].

transfer): it is indeed possible to identify RSSI values matching the radio sensitivity threshold
between consecutive Wi-Fi transmissions.
Figure 4.1(c) shows an example of interference generated by Bluetooth. The latter uses

an Adaptive Frequency Hopping mechanism to combat interference, and hops among 1-MHz
channels around 1600 times/sec., hence it remains in a channel for at most 625 µs. Since
Bluetooth channels are more narrow than the ones de�ned by the 802.15.4 standard, it may
happen that communication in multiple adjacent Bluetooth channels a�ects a single 802.15.4
channel.
Figure 4.1(d) shows an example of the interference pattern caused by microwave ovens: high-

power noise (≈ 60 dBm) is emitted in the 2.4 GHz frequency band in a very periodic fashion.
The period mostly depends on the power grid frequency, but can also slightly vary depending
on the oven model. Works in the literature report a power cycle of roughly 20 ms (at 50 Hz)
or 16 ms (at 60 Hz) with an active period of at most 50% of the power cycle [3, 12].
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4.3 Model Instantiation

The interplay between idle periods and busy periods is complex because of the particular
patterns of each interfering source. Some devices, such as microwave ovens, generate periodic
interference patterns with relatively long idle periods (Figure 4.1(d)), while others, such as Wi-
Fi stations, generate interference patterns with short idle periods of a highly variable length
(Figure 4.1(b)).
In order to quantify precisely the distribution of idle and busy periods, we use the previously

described tool to capture data used to determine the cumulative distribution function (CDF)
of idle and busy periods in a given IEEE 802.15.4 channel. We continuously scan the radio
channel and detect whenever the activity in the channel is above a con�gurable threshold Rthr.
A channel is de�ned as busy if the RSSI is higher or equal than Rthr and idle otherwise. We
then map the amount of consecutive RSSI samplings spent above or below Rthr to the time
in which the medium remained busy or idle, respectively. This operation is relatively easy as
one RSSI sampling always takes the same amount of time (we have used lookup tables to make
sure the execution time remains approximatively constant).
Figure 4.2 shows the cumulative distribution function of idle and busy periods measured by

a Maxfor MTM-CM5000MSP node in the presence of a laptop continuously downloading a �le
from a nearby access point. Figure 4.3 shows the cumulative distribution function of idle and
busy periods measured by a Maxfor MTM-CM5000MSP node in the presence of an operating
microwave oven.
In the scenario shown in Figure 4.2, the probability of having an idle period longer than 2 ms

is smaller than 5%. This implies that the chances that a burst of packet (e.g., a message-based
handshake) successfully completes within an idle period are rather low. In order to escape
interference, one would need to use short messages and send them as close as possible to each
other, in order to increase the chances of �tting them into an idle period.
For common interference sources such as Wi-Fi devices, the CDF distribution follows an

exponential distribution. For these cases, we instantiate the model described in Section 2.1.2,
as described next.

4.3.1 Exponential Distribution of Idle and Busy Periods

We use the CDF shown in Figure 4.1(b) to demonstrate how to instantiate the model given by
Equation 2.14. We �t the data points to the model given in Equation 2.14 to obtain the CDF
parameter λ for idle and busy periods. The results for di�erent threshold values are shown in
Table 4.1. For a given threshold value Rthr, we show the outcome of the �tting and the residuals
in Figure 4.5 (busy periods) and Figure 4.4 (idle periods). Table 4.2 shows the residual sum of
squares (RSS) of CDF data and exponential model (the smaller the values, the better the �t).
As it can be seen, although the residuals are biased, they are generally not very high, which
suggests that the exponential distribution is suitable to model this type of environments.

4.3.2 Bounds

The interference patterns observed by a node will �uctuate over time and for this reason it
might be bene�cial to assume a more conservative CDF for busy and idle periods other than
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Figure 4.2: Cumulative distribution function (CDF) of idle and busy periods measured by a
Maxfor MTM-CM5000MSP node in the presence of a laptop continuously down-
loading a �le from a nearby access point [4].

Rthr = −91 Rthr = −85 Rthr = −76 Rthr = −64 Rthr = −46
Idle periods 31.680 43.693 35.870 16.411 10.612

Busy periods 1.608 1.739 3.901 5.560 6.837

Table 4.1: λ values for the instantiated model of Idle and Busy CDF.

Rthr = −91 Rthr = −85 Rthr = −76 Rthr = −64 Rthr = −46
Idle periods 0.027 0.047 0.018 0.046 0.063

Busy periods 0.060 0.021 0.100 0.094 0.177

Table 4.2: Residual sum of squares (RSS).

the one obtained by �tting the model to the measured data.
CDF bounds can be described by adjusting λ obtained via curve �tting. For example, one

could simply multiply λ with a �xed value δu (upper bound) or δl (lower bound) to obtain
bounds. However, in this case it is not clear what a good value for δu or δl would be.
To determine reasonable values for δu or δl we use the following approach. We increase δu

starting at δu = 1 until P percent of data points are below the bounding curve described as
1 − e−δu·λ·i. We also allow to use a limit in terms of i up to which this bounding condition is
evaluated. The lower bound curve determined by δl can be determined similarly. Obviously,
these bounds can be determined for idle and busy CDF.
Selecting a high value P ensures that also extreme values are included within the bounds.

Thus, it is ensured that extreme (but likely) patterns are covered by the bounds. Simply
choosing a value for δu or δl without applying the described mehod would also be possible but
in this case it might be that an unnecessary high and thus conservative bound is selected.
Figure 4.6 shows the bounds for idle and busy periods for the example described in the

previous section (See Figure 4.4 and Figure 4.5). Depending on the application scenario either
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Figure 4.3: Cumulative distribution function (CDF) of idle and busy periods measured by a
Maxfor MTM-CM5000MSP node in the presence of an operating microwave oven.
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Figure 4.4: Model �tting for the idle period CDF with Rthr = −85dBm and residuals.

upper or lower bounds may be of importance. Here P = 80% was used, which results in
δu = 1.06 or δl = 0.535 for the busy period CDF and δu = 1 or δl = 0.035 for the idle CDF.
Using bounds is particularly useful when aggregating interference measurements from di�er-

ent measurement locations to instantiate an interference model for a particular network region.
This approach is described in the next subsection.

4.3.3 Aggregation

In most situations an interference model for multiple locations is required (a number of nodes
are deployed). Thus, it would be bene�cial if a single model instantiation can be used to cover
a number of locations (i.e., nodes in the deployment). If interference patterns are similar at a
set of locations, it is possible to provide an aggregated model.
Figure 4.8(a) shows an experimental setup in a lab environment. Figure 4.8(b) shows the
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Figure 4.5: Model �tting for the busy period CDF with Rthr = −85dBm and residuals.
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Figure 4.6: Bounds for idle (δu = 1, δl = 0.035) and busy (δu = 1.06, δl = 0.535) periods with
P = 80% (Rthr = −85dBm).

measured busy periods. Clearly, it can be seen that the measured interference for some nodes
is similar (similar interference patterns are coded using the same color). Now it is possible to
use all measurement data from all nodes (or some nodes) within a group of similar interference
patterns to �t the interference model.
In a �rst step we use data from nodes 202, 207, 209, and 214 to instantiate the interference

model for busy periods. The resulting �t for this data is shown in red in Figure 4.7. In addition,
the red dashed lines show the upper and lower bound (with δu = 1.345, δl = 0.615 for P = 80%)
for this aggregated model instantiation.
We now reduce the number of measurement points considered for model instantiation. We

only use nodes 214 and 207 to instantiate the model (which is shown as green curve in Fig-
ure 4.7). As we can observe, there is not much bene�t in considering the additional two nodes
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Figure 4.7: Aggregated �tting of 4 nodes (202, 207, 209, 214) and 2 nodes (207, 214), and node
216's busy periods when using Rthr = −89dBm.

when instantiating the model as both �tted curves are nearly identical.
In a next step we consider node 216 (which is shown in blue in Figure 4.7). This node has

not been included in the instantiation of the two models (shown in green and red), but, as we
can observe, both models still cover reasonably well this node's busy period observations when
considering the provided upper bound.
We have discussed here the aggregation of busy periods in an example deployment. The same

approach can be used as well to aggregate idle periods. Aggregation can only be performed
after interference patterns have been collected at each node. It has to be determined �rst,
which nodes can be grouped together for an aggregated model. Thus, the e�ort for initial data
collection cannot be reduced. However, using aggregated models has still a number of bene�ts.
First, only one model is necessary which can be employed on a number of nodes which simpli�es
system con�guration. Second, if interference patterns have to be monitored and veri�ed it is
su�cient to dedicate only a few nodes of an interference group to this particular task (if the
same interference sources are present). This is particularly bene�cial for implementation of
runtime assurance.
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Figure 4.8: Cumulative distribution function (CDF) of busy periods among several Maxfor
MTM-CM5000MSP nodes located inside a 56 m2 o�ce. The colors identify the
nodes in which similar interference patterns were measured.
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5 Platform: Receiver Signal Strength

Indicator

Temperature is known to have a signi�cant e�ect on the performance of radio transceivers, the
higher the temperature, the lower the quality of the link. A model capturing the relationship
between temperature and RSSI was presented in Deliverable D-1.1 [16] and summarised in
Section 2.2.1. In this model, the e�ect of temperature on RSSI is modelled by looking at
temperature e�ects on transmission power, receiver power, and noise �oor. The e�ects are
quanti�ed in model parameters α, β and γ, where α represents the temperature e�ects on
transmitted power, β on the receiver power, whilst γ on the noise �oor. For this model to be
instantiated, the value of each of these three parameters has to be known.
To calculate these values, we need tools that can collect RSSI measurements on the target

platform. These measurements must not only be taken whilst the platform is exposed to
di�erent temperatures, but also in speci�c con�gurations. For example, to parametrise α,
the e�ect of temperature on the transmitter must be isolated, and therefore we need RSSI
measurements where only the temperature of the sender is varied whilst the temperature of the
receiver remains constant. Likewise, for β (and γ), we need RSSI (noise �oor) measurements
where only the temperature of the receiver varies.
Whilst the model can be instantiated by parametrising α, β and γ with data collected using

the approach outlined above, it is unknown whether these values are speci�c to the nodes
(platform instances) used to collect the RSSI data. Analysis is required where data collected
from multiple pairs of nodes are evaluated to see how similar the produced models are and if
a single model can be used to represent all instances of a particular platform. Similarly, to
produce an aggregated model for all platform instances, an understanding of how α, β and γ
vary when di�erent transmission powers are used, is also needed. Our aim through this analysis
is to provide a single model instance for a given platform which would represent all instances
of that platform at all transmission powers.
In the next section, we present a tool that runs on the platform being evaluated and collects

RSSI and temperature data. We also describe how the tool can be used to capture a dataset. In
Section 5.2 the collected dataset will be used to instantiate the model presented in Section 2.2.1.
Next, we investigate whether a single platform model instantiation is su�cient or whether
instantiations for individual platform instances are necessary. Similarly, an investigation on
the validity of a single model instance covering all available transmission power is also given.

5.1 Collecting RSSI Data

For the RSSI platform model to be instantiated temperature and RSSI data must be collected.
RSSI measurements must be recorded in multiple deployment con�gurations where the tem-
perature of either the sender or receiver has been varied whilst the temperature of the other is
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�xed. At the point of each transmission the temperature of both the sink and source system
must be recorded along with the transmission power used. In this section a data collection
application will be presented which can collect such data.
For the necessary data collection, we write an application for the Contiki operating system

measuring RSSI, temperature, and transmission power settings. The application utilises packet
transmissions between a pair of nodes to collect RSSI data. The source system transmits a
packet containing a measurement of its on-board temperature and the transmission power
selected. The receiver logs the measured RSSI, the temperature of the sender and receiver, and
the transmission power used for transmission for every received packet. Alongside collecting
RSSI data of received packets, the receiving system also measures the noise �oor.

Source Firmware. The source application has a setup and an active phase. During the
setup phase the application performs the general con�guration of the platform including setting
up its communication stack. The network stack is con�gured to use NULLMAC and NULL-
RDC. These are MAC and Radio Duty Cycling (RDC) protocols without duty cycling. In
this way, we can maximise the probability of packet reception and minimise the duration of an
experiment.
During the active phase, the temperature is �rst measured and the transmission power is

selected before entering the packet transmissions loop. There is an additional wait of 100ms
after reading temperature to enable the sink to measure the noise �oor. During each iteration
of the packet transmission loop, the platform creates a packet containing a sequence number,
the measured temperature and the transmission power. The packet is then transmitted to
the receiving system. The system transmits 10 packets during the packet transmission loop,
which should provide enough transmissions for each transmission power whilst executing quickly
enough such that the temperature recorded at the beginning of the active period is still valid.
The active phase is continuously repeated, so to obtain su�cient sample points to obtain the

necessary data. With each active phase, the application cycles through the available transmis-
sion power settings on the platform. This enables all transmission setting to be evaluated at
each visited temperature point with only one run of the application. This cuts down on the
number of application runs and the necessary executing time.

Receiving Firmware. Similarly, the receiving application has two phases: setup and active.
During the setup phase the necessary system and network stack con�guration are applied. In
active mode, the device listens for packet transmissions measuring the RSSI for each given
packet. In sync with the source system, using the sequence number, the node measures its on-
board temperature every 10 packets. This ensures that both systems measure the temperature
at the same point in time to minimise the chances of lost packets. After reading its temperature,
the receiving system also takes 100 noise �oor samples, recording the most frequent. The node
outputs the measured temperature and noise �oor at the start of each active phase using
RS232. With each packet the measured RSSI, the local on-board temperature measurement,
the on-board temperature of the sender and the transmission power selected is outputted.

Usage. The above application is deployed in a temperature controlled facility where the
temperature of nodes can be controlled. This minimises the time required to collect the nec-
essary data needed to parametrise the model. Nodes are used in pairs with each node heated
individually. In one application run, the sender is heated whilst the temperature of the receiver
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Figure 5.1: Temperature cycle during the RSSI data collection application.
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Figure 5.2: RSSI Mesasurements for two nodes measured by the RSSI data collection tool.

is �xed to enable the e�ect of temperature on the sender to be measured. In a second applica-
tion run, the temperature of only the receiver is changed to measure the e�ect of temperature
change on the receiver. Multiple pairs of sender and receivers are used to increase measurement
accuracy.

Results. We show results for collected data on two pairs of nodes. We used Maxfor MTM-
CM5000MSP Telos-B clones, and placed the source and receiver nodes at approximately 3
meters distance. The temperature of each node was cycled from room temperature (25◦C) to
approximately 60◦C over a time span of 2 hours. The temperature cycle followed a Gaussian
curve. During the �rst cycle only the temperature of the sender was varied, whilst the temper-
ature of the receiver was �xed. During the second cycle only the temperature of the receiver
was varied. Finally, during the third cycle, both nodes were heated to allow us to see the
overall e�ects. Heating each node separately and together isolates the e�ects of temperature
on RSSI to either the receiver or sender. Figure 5.1 illustrates this heating in action, all three
temperature cycles can be seen.
Figure 5.1 presents the RSSI measurement for the two sets of nodes. Whilst data was

Copyright © 2013 RELYonIT consortium: all rights reserved page 31



RELYonIT
Dependability for the Internet of Things

Report on
Learning Models Parameters

collected for all transmission power levels, the �gure only shows transmission powers 3, 5, and
7. Results for the other power levels follow the same curves o�set by transmission power. For
each plot the results show the expected strong correlation between changing temperature and
RSSI. Regardless to whether the receiver or sender is heated, RSSI falls as heat is applied.
The �gure show that heating of both nodes has a cumulative e�ect on RSSI where the e�ect
on the receiver can be added to the e�ect on the sender. Data from a second set of nodes
was also collected which showed the same results. These two datasets will be used in the
following section to instantiate the RSSI model, investigating aggregating platform instances
and transmission power.

5.2 Model Instantiation

In this section the data collected by the RSSI collection application will be used to instanti-
ate the RSSI model presented in Section 2.2.1. Initially the parameters α, β, and γ will be
parametrised using data from a single pair of nodes evaluating how e�ective the model is to
represent a platform instance. Next aggregation will be investigated, using data from multiple
pairs of nodes to evaluate how well a single platform model can represents all instances of the
platform. Finally, how well a single model instance represents all available power levels will be
evaluated.

5.2.1 Parameterising the RSSI Model

We �rst derive values for the parameters α, β, and γ that are needed to model the e�ects of
temperature on SNR given in Equation 2.16. Measurements collected for a single power level
and node pair are used. The power level chosen is power level 3 (-25 dBm). Transmitter and
receiver nodes are node 3 and node 2, respectively.
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Figure 5.3: RSSI values with power level 3
when only transmitter is heated.
(TX = Node 3, RX = Node 2)
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Figure 5.4: RSSI values with power level 3
when only receiver is heated. (TX
= Node 3, RX = Node 2)

Figure 5.3 shows the relationship between RSSI and temperature obtained when only the
transmitter is heated. The slope of the linear model of the RSSI values gives us the parameter
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α = 0.065. Figure 5.4 shows the relationship between the RSSI and temperature obtained when
only receiver is heated. The slope of the linear model of the RSSI values gives us the parameter
β = 0.069.
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Figure 5.5: Observed changes in noise �oor.
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Figure 5.6: RSSI values with power level 3
when both transmitter and re-
ceiver are heated. (TX = node 3,
RX = node 2).

Figure 5.2.1 shows the relationship between the noise �oor and temperature. The slope of
the linear model of the noise �oor values gives us the parameter γ = 0.045. For completeness,
Figure 5.2.1 shows the relationship between the RSSI and temperature obtained when both
transmitter and receiver are heated. We used the model and the derived values above of
α = 0.065 and β = 0.069 to �t a line to the dataset. We can compare the model to a �tted
linear trend, the slope of this line would be 0.132 whereas the slope derived by the model is
(α+ β) = 0.134.
For the deployed nodes, the minimum and maximum temperature measured was 25◦C and

55◦C respectively. Over this temperature range, an attenuation in SNR of 3.04 dBm was
observed when both transmitter and receiver were heated. Using the same temperature con�g-
uration, the model predicted that attenuation should equal to (α + β − γ)∆T = 2.67 dBm, a
deviation of 12% or 0.37 dBm.

5.2.2 In�uence of Power Levels

In the previous section it was shown how values can be derived for the model parameters of a
single node with a single transmission power level. Typically, platforms can adjust the selected
transmission power to increase range, decrease interference or conserve energy. In this section
we want to see the e�ect of temperature on SNR at di�erent power levels. For this investigation,
we �rst examine RSSI measurements of the link between node 3 and node 2 with transmission
power levels 3 (-25 dBm), 16 (-7 dBm), and 31 (0 dBm).
Figure 5.2.2 shows the relationship between the RSSI and temperature obtained with the

three di�erent transmission power levels when only the transmitter is heated. α parameters
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Figure 5.7: RSSI values with power levels 3,
16, and 31 when only transmitter
is heated. (TX = node 3, RX =
node 2).

25 30 35 40 45 50 55 60 65
−80

−75

−70

−65

−60

−55

−50

−45

Temperature (°C)

R
S

S
I (

dB
m

)

 

 

RSSI (PL = 3)
Model (PL = 3)
RSSI (PL = 16)
Model (PL = 16)
RSSI (PL = 31)
Model (PL = 31)

Figure 5.8: RSSI values with power levels 3,
16, and 31 when only receiver is
heated. (TX = node 3, RX =
node 2).

are 0.065, 0.074, and 0.073 with power levels 3, 16 and 31, respectively. Figure 5.2.2 shows
the relationship between RSSI and temperature obtained with the three di�erent transmission
power levels when only the receiver node is heated. β parameters are 0.069, 0.066, and 0.073
with power levels 3, 16, and 31, respectively. There is a maximum deviation of 0.009 in α and
0.007 in β. The value of γ is not in�uenced by transmission power and thus is equal to the
value derived in the previous section.
Whilst individual models for each power level can be instantiated, it would be bene�cial to

have one model for all transmission powers. Towards this, we calculate average, maximum and
minimum α and β values for all power levels 3 to 31 inclusive (RSSI values are invalid for power
levels below 3). We remove outliers from the α and β data sets. A value is decided as an outlier
if it satis�es one of these two conditions: the change between the value and the previous value
is greater than 1000% of the mean of 9 successive changes up to the previous value; and the
change between the value and the next value is greater than 1000% of the mean of 9 successive
changes after the next value. Table 5.1 presents the results. The table shows that the best
(i.e., with minimum temperature e�ect) α and β values are achieved when the power level is
28, the worst (i.e., the highest temperature e�ect) α value is when the power level is 8, and
the worst β value is when the power level is 24. We also �nd average, maximum and minimum
(α + β − γ) calculation. It is shown in Table 5.2 that maximum SNR attenuation is observed
when the power level is 8, and the minimum SNR attenuation is observed when the power level
is 28. When instantiating the model, the di�erence in the minimum and maximum values over
a temperature range of 30◦C equals 1.77 dBm.

5.2.3 Aggregating Platform Instances

In this section we want to see the e�ect of temperature on SNR with the aggregation of multiple
platform instances. The aim of aggregation is to allow a single platform model instance to be
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Average Maximum Minimum
α 0.075 0.092 (Power Level - 8) 0.064 (Power Level - 28)
β 0.069 0.081 (Power Level - 24) 0.048 (Power Level - 28)

Table 5.1: Average, maximum and minimum α and β values for all power levels 3 to 31 inclusive.

Average Maximum Minimum
(α+ β − γ) 0.099 0.126 (Power Level - 8) 0.067 (Power Level - 28)

Table 5.2: Average, maximum and minimum (α+β− γ) calculation for all power levels 3 to 31
inclusive.

used to represents all instances of a platform. Whilst this will reduce the precision of the model
when compared to measurements taken at a single link, it will decrease the computation of
applying the model and necessity of collecting data on every platform instance.
We take the average RSSI values of the link between node 3 and node 2 and the link between

node 5 and node 6. Power level is chosen as 3. We removed the outliers from the aggregated
data set. A value is an outlier if it satis�es one of these two conditions: the change between the
value and the previous value is greater than 2000% of the mean of 9 successive changes up to
the previous value; and the change between the value and the next value is greater than 2000%
of the mean of 9 successive changes after the next value. The value of 2000% is high enough
to o�er high con�dence in that the samples removed are outliers.
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Figure 5.9: Average RSSI values of two links
with power level 3 when only
transmitter is heated. (TX 1 =
Node 3, RX 1 = node 2, TX 2 =
node 5, RX 2 = node 6).
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Figure 5.10: Average RSSI values of two links
with power level 3 when only re-
ceiver is heated. (TX 1 = Node
3, RX 1 = node 2, TX 2 = node
5, RX 2 = node 6).

Figure 5.2.3 shows the relationship between the RSSI values of two links and temperature
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obtained when only transmitters are heated. The slope of the linear model of the RSSI values
gives us the parameter α = 0.055. Figure 5.2.3 shows the relationship between the RSSI values
of two links and temperature obtained when only receivers are heated. The slope of the linear
model of the RSSI values gives us the parameter β = 0.076. Although the individual parameters
change in comparison to only a single node, (α + β − γ) for this aggregated instance is 0.89
which compares to 0.9. This would equate to a di�erence of 0.03 dBm between the two models
over a 30◦C temperature range.

5.2.4 Bounding

In the previous sections it was shown how to �t the RSSI model to a single node, all power
level and aggregation of multiple nodes. This model instantiation aims to provide the best �t
to the average RSSI change with varied temperature. This average case has limited utility.
Bounding of this model is required to increase its usefulness. A worst bound would enable the
worst case change in SNR for a link between two nodes to be calculated with regards to varying
temperature.
For RSSI, model bounding will be achieved by applying a single negative o�set to the model

to provide a worst case. This bound should be high enough to provide an adequate safety
margin such that the majority of RSSI measurements fall above this bound. Whilst there are
various methods that can be employed to calculate the o�set used for this bound, we calculate
this o�set by summing the separate o�sets to enable X% of samples to be included when only
the transmitter is heated and when only the receiver is heated. We choose 80% for value of X.
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Figure 5.11: Average RSSI values of two links
with power level 3 when only
transmitter is heated with an
80% bound. (TX 1 = node 3,
RX 1 = node 2, TX 2 = node 5,
RX 2 = node 6).
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Figure 5.12: Average RSSI values of two links
with power level 3 when only
receiver is heated with an 80%
bound. (TX 1 = node 3, RX 1 =
node 2, TX 2 = node 5, RX 2 =
node 6).

To investigate bounding, we use the aggregated dataset used in the previous section. Fig-
ure 5.2.4 shows the relationship between RSSI and temperature for this aggregated dataset
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were only the transmitter is heated. The �gure includes a bound where 80% of sample points
fall above. The o�set for this bound is calculated as 0.1415 dBm. Similarly, in Figure 5.2.4 the
bound is shown in the case in which only the receiver is heated. The o�set for this bound is
calculated as 0.1325 dBm.
We take these two calculated o�sets and sum them to determine the overall bound for the

complete model. The sum of these o�set is 0.274 dBm. Figure 5.13 presents the relationship
between RSSI and temperature in which both receiver and transmitter are heated. The instan-
tiated model for this dataset uses values of α = 0.055 and β = 0.076 (calculated in the previous
section) with an o�set set to the value of the �rst sample. A bound line with the o�set 0.275
dBm calculated above is also shown. To determine how e�ective this bound is, we calculated
the percentage of sample points that lie above this bound as 40%. This di�ers by 40% to
the 80% used on the two individual datasets above to calculate this o�set. This percentage is
relatively low and can be explained to the o�set used to �t the model to the dataset. An o�set
which enabled the model to better �t the samples would lead to a bound that included more
sample points. The same bounding approach could be used to improve the utility of the model
�tted to the aggregation of power levels.
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Figure 5.13: Average RSSI values of two links with power level 3 when all nodes are heated
with an 80% bound. (TX 1 = node 3, RX 1 = node 2, TX 2 = node 5, RX 2 =
node 6).
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6 Platform: Timing

In Section 2.2.2 two models were presented which describe the relationship of the RT and RC
clock to temperature. These models enable protocol designers to understand the changes in
clock rate to mitigate their e�ects. For either model to be used, a number of measurements of
the clock rate for the clock being modelled at various temperature points are required.
This chapter will �rst examine how to construct a tool to collect this timing data which can

be used to instantiate the timing model. This tool is then used to collect an example dataset of
timing/temperature measurements for three nodes. In Section 6.2, the results collected are used
to instantiate the model. Next an examination of the number of samples required to instantiate
both models will be presented with the aim of reducing the number of samples required and thus
collection time. Following this, methods to determine bounds and to aggregate measurements
are discussed.

6.1 Measuring Timing Characteristics

There are two basic approaches to measuring the timing characteristic of a mote. The �rst
makes use of sophisticated lab equipment for example, a calibrated oscilloscope, to measure the
clock frequency. The second makes use of the clock of a secondary system (for example, PC
or mote) to measure the clock frequency. Either of these approaches can be used to measure
the clock directly by attaching to the clock source or indirectly by timing an event such as the
toggling of a GPIO pin or time between two packets controlled by the clock being measured.
In this section tools for the collection of timing data will be examined, the �rst is lab-

based and the second is deployment-based. During lab-based collections, the platform would
be examined before the deployment o�-line, aided with lab equipment. For deployment-based
collections the platform would be examined at the point of deployment during the setup phase
prior to the system/application going live. This section will examine these two methods.

6.1.1 Lab-Based Approach

Naturally, measuring clock rate and temperature in the lab should yield the most accurate
results. Clock rate can be measured with tools such as a calibrated oscilloscope whilst at
the same time the on-board temperature of the platform can be tightly controlled enabling
measurements to be taken at exactly the sample points required. This, however, comes at the
cost of requiring expensive lab time for each platform or even each platform instance.
For lab-based data collection, a simple application was written for the Contiki operating

system which would toggle a GPIO pin at �xed rate dependent on the clock being examined.
The software has a setup phase where the system is con�gured ready for sampling and then an
active phase where in a loop the temperature is measured and outputted before toggling the
GPIO pin at the con�gured rate.
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During the setup phase, the software con�gures two GPIO pins for output, con�gures the
clock source being measured, and disables any activity that may interrupt the sampling process
(e.g., interrupts/watchdog).
During the active phase, the node enters a temperature measurement period where temper-

ature is measured and outputted via RS232. Next the system enters the clock sampling period
where a GPIO pin, the trigger pin, is raised to mark the start of sampling. The second GPIO
pin, the clock output pin, will then be toggled at a rate depending upon the clock being ob-
served. After 100 output cycles, the trigger pin is lowered to mark the end of the clock sampling
period. These two periods then repeat until the application is terminated.
The rate at which the clock output pin is toggled will depend on the clock source being

measured. For a peripheral clock source, the software would toggle the pin every n clock
ticks of the source clock. Whilst for the processor clock, the processor would perform n NOP
operations between each pin toggle.
The value of n must be su�ciently large to ensure the clock period is large enough to remove

any variance induced by the measurement software. The software uses a simple loop and if
statement to determine when toggling is necessary. This simple set of instructions can add
a small amount of variance to the time length of the clock period depending at the point of
execution when the clock source state changes.
The platform is plugged into a PC to record the temperature output log, time stamping each

temperature output using the PC system time. Both the trigger GPIO pin and the clock output
GPIO pin are connected to a calibrated oscilloscope. The oscilloscope is con�gured to measure
the period that the clock output pin is high whilst the trigger pin is set. These measurements
are recorded by the oscilloscope to a �ash drive where they are also time-stamped to enable
correlation with the recorded temperature. Both the PC log and the oscilloscope log are later
parsed using a simple script which outputs time, temperature and clock rate which can then
be used in the model.
As the platform would normally sit at the ambient temperature of the lab, the temperature

of the on-board platform must be controlled to enable the measurements at the sample points
required. A TempLab facility can be used to control the temperature of the node. Using
the heating lamp or the Peltier enclosures (LO nodes or PE nodes [5]), the temperature of
the device can be �nely tuned. Typically a Gaussian function would be used to produce a
temperature curve, from room temperature up to the maximum lamp output temperature with
a temperature step time su�cient to enable sampling.
This tool was used to collect the necessary data used to derive and validate the models in

Deliverable D-1.1. Whilst collecting clock data in the lab is a valid approach, it can be a costly
exercise. Another approach would be to measure the variances in clock rate at the deployment
during setup: this would be both cheaper and would utilise the actual nodes being deployed to
collect the data. This should produce a better �tted model tailored speci�cally to the platform
instances used at the deployment.

6.1.2 Deployment-Based Approach

For the deployment-based approach, we have written an application for the Contiki operating
system, which uses the timing of packet transmissions to determine the clock rate of the send-
ing system. The source system transmits a packet containing a measurement of its on-board
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temperature at a �xed interval controlled by the clock source being measured. The receiver
receiving these packets will log the temperature of the sender and the inter-arrival time between
packets. Using the inter-arrival time, the clock rate of the source system can be calculated to
provide the necessary data (temperature/clock rate) required for the model.

Source Firmware. The client application has a setup and an active phase. During the setup
phase the application performs the general con�guration of the platform including setting up
its communication stack and the clock sources that the application samples. As stable packet
transmission timing is essential, variances caused by MAC duty cycling or re-transmissions
must be eliminated such that there is no e�ect on the clock rate sampling. ContikiOS NULL-
MAC/RDC was used which performs no duty cycling or retransmission and 802.15.4 back-o�
mechanism was also disabled. This should enable the timing between the request for packet
transmission and the start of actual transmission to be �xed. Interrupts and other sub-systems
cannot be disabled as they are required for system and network operations and as such may
lead to some variance in measurements. These variations are overcome by collecting a large
number of samples and removing outliers during model instantiation.
During the active phase, the temperature is �rst measured before entering the packet trans-

missions loop. During each iteration of the packet transmission loop, the platform uses the
clock being measured to perform a �xed period wait before constructing and sending a packet.
The packet contains a sequence number, the measured temperature and a �eld identifying the
clock source being measured. The number of packets sent has to be small enough such that
the temperature recorded at the beginning of the active period is still valid. However, it is
important that a large number of samples for a given temperature can be recorded to remove
errors caused by �uctuations in processing time during packet transmission and the e�ects of
any interrupts.
The active phase is continuously repeated to provide su�cient sample points to provide the

necessary data. With each active phase, the application cycles through each of the available
clocks on the system with each active cycle. This enables all clocks on the system to be
evaluated at each visited temperature point with one run of the application. This should cut
down on the necessary time needed during deployment setup to model timing.

Sink Firmware. Similarly, the server application has two phases: setup and active. During
the setup phase the necessary system and network stack con�guration are applied. In active
mode, the device listens for packet transmissions, calculating their inter-arrival time. This
calculation is only performed for consecutive packets (con�rmed by sequence number) and
packets that pertain to the same clock source (identi�ed in the packet). Between the reception
of each packet, the sink measures the local temperature to con�rm its temperature stability. It
is important that the receiver remains temperature stable, �uctuations in temperature could
lead to changes in its own clock, which would lead to invalid results. The sink for each packet
outputs the clock ID, the sink temperature, the source temperature and the measured inter-
arrival time.

Usage. The application should be deployed on the nodes during the setup phase of a
deployment. It is envisaged that nodes would be programmed one at a time with the source
�rmware. A laptop with connected mote would run the sink �rmware collecting data from each
of the motes. It is required to collect timing samples at di�erent temperature settings.
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Figure 6.1: Processor RC clock from two nodes.

Results. We show results for three pairs of nodes. Using the TempLab facility enabled
the application to be more thoroughly tested as temperature can be controlled. The platform
selected for these tests was the Maxfor MTM-CM5000MSP Telos-B clones. Nodes where placed
at approximately 2 meters from sensor to receiver. The temperature of each node was cycled
from room temperature 27◦C to approximately 50◦C over a time span of 15mins. This was
repeated three times doubling the duration of the temperature cycle to 30mins to 60mins and
120mins with a rest period of 30 mins between each cycle. The test was repeated three times
with three di�erent nodes acting as source to generate data from di�erent instances of the
platform.
Figure 6.1 presents the results for the processor clock. It con�rms the results seen in D-

1.1 with a correlation between the time taken by the process and therefore clock rate and
temperature. As temperature increases, the time taken increases and, similarly, as temperature
falls the time taken falls. The plot shows data for two nodes, the third node showed the same
correlation. Figure 6.2 presents the results for the RTC clock. The same correlation between
temperature and clock speed can be seen. The data collected and shown illustrated in these
plots will be used in the following section to instantiate the two clock models.

6.2 Timing Model Instantiation

In this section, the example results collected in the previous section will be used to validate
the collection tool by instantiating the model. Next an examination of the number of samples
required to instantiate both models will be presented with the aim of reducing the number of
samples required and thus collection time. Following this method to bound the model with the
necessary upper and lower bounds required for WP3 will be examined. Finally, an examination
of aggregation will be presented, evaluating the possibility of aggregating the models of multiple
nodes to form a single platform speci�c model.
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Figure 6.2: RTC Clock from two nodes.

6.2.1 Primary System Clock

The model shown in Equation 2.17 was used to describe how the RC clock changes with tem-
perature. To instantiate this model, the data collected using the Maxfor MTM-CM5000MSP
platform in the previous section was used. Room temperature, T0, is generally assumed to be
25◦C, thus we use this value for our calculations.
During data collection, multiple processing time samples were recorded at each temperature

point. Some of these recorded processing times are signi�cantly di�erent to others. This
large di�erence in values will be down to variances in the running system and these should
be ignored. Thus, before applying the model we take the average of processing time values
for each temperature value, whilst also removing outliers. We decide if a value is an outlier
if it satis�es these two conditions: the change between the value and the previous value is
greater than 500% of the mean of 4 successive changes up to the previous value; and the change
between the value and the next value is greater than 500% of the mean of 4 successive changes
after the next value. We use a large value when removing outliers to give a large con�dence
that values removed are outliers. After removing outliers, we calculate processing time change
in percentage from the temperature when the experiment started, the processing time for the
�rst observed temperature is chosen as the reference speed.
The processor clock was �rst examined. Several outliers observed at temperature points 30.4,

47.9 and 49 were removed. Figure 6.3 shows the relationship between the averaged processing
time and temperature with the derived model for one example node (node 7). The same model
process could be applied to the data collected for the other nodes. The Y-axis shows processing
time change in percentage whilst the X-axis shows temperature. The determined temperature
coe�cient is 3.89E-01.
The residuals are used to evaluate how well the model �ts the data measured by node 7.

Each residual shows the di�erence between the model and actual data point. Figure 6.4 shows
the residuals for processor clock from �tting the model to node 7. The measured data �ts the
model with an average residual of 2.98E−01%. Maximum residual of 6.05E−01% is observed
at 26.7 ◦C. These residuals show that the model is slightly biased.
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Figure 6.3: Model �tting for RC clocks.
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Figure 6.4: RC clock model residuals.

Node A1[%/ ◦C] A1[%/ ◦C2] A1[%/ ◦C2]

Node 7 -1.51E-04 8.93E-05 -2.10E-06

Table 6.1: Determined RT temperature coe�cients for Node 7.

6.2.2 Real-Time Clock

For the Real-time clock, we repeat the same steps undertaken in the previous section. We use
data from node 7 to instantiate the RT clock platform model. Similarly to the RC Clock a
number of outliers where recorded at temperatures 28.6, 29.4, 34.2, 36.9 and 44.8, these where
removed from the dataset. Figure 6.5 shows the relationship between the RTC clock time and
temperature as well as the derived model. The x-axis shows temperatures and the y-axis shows
change in the RTC clock expressed as a percentage. The determined temperature coe�cient is
shown in Table 6.1.
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Figure 6.5: Model �tting for RT clocks.
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Figure 6.6: RT clock model residuals.

Figure 6.6 shows the residuals of �tting the RT clock model. The measured data �ts the
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Node 7 - RC clock Node 7 - RT clock

Experiment 1 1.17E-01 1.15E-06

Experiment 2 1.46E-01 1.24E-06

Experiment 3 1.72E-01 4.58E-06

Table 6.2: Average RSS values between the �rst experiment's data and the model curves for
each experiment.

Node 7 - RC clock Node 7 - RT clock

Experiment 2 25.00% 7.6%
Experiment 3 47.64% 298.57%

Table 6.3: Average RSS increases in percentage of Experiments 2 and 3 relative to average RSS
of Experiment 1.

model with an average residual of 8.25E−04%. Maximum residual of 3.10E−03% is observed
at 28.9 ◦C. These residuals are unbiased and show that the model is a good �t for the provided
data.

6.2.3 Reducing the Sample Size

Instantiating the RC and RT model we used data collected with the deployment-based appli-
cation. The application collected a signi�cant number of timing samples at each temperature
point. This large number of data samples may not be necessary to accurately instantiate the
model. Reducing the number of samples necessary will reduce the time taken, the storage and
the required processing. This section will repeat instantiating the model with a reduced data
set to evaluate the e�ect of reduced sample sizes.
During data collection we recorded over 500 samples for each 5 ◦C interval, this will be

regarded as the best case. We compare this con�guration with two others which contain a
reduced sample size. In the �rst con�guration we use 100 samples for every 5 ◦C interval
which is a 5-fold saving and for the second we use 11 samples for each 5 ◦C interval which is
approximately a 50-times reduction. A meaningful model could not be instantiated when a
sample sizes of less than 11 was used. As the comparison metric, we use average residual sum
of squares (RSS). Average RSS values between the best case and the model curves for each of
the reduced sample con�gurations are shown in Table 6.2. Error between the best case data
and the model curves increases as the sample size decreases. Table 6.3 shows RSS increases
in percentage of con�guration 1 and 2 relative to RSS the best case. The percentage increase
in RSS values for both reduced sample points are signi�cantly higher with the RC clock and
therefore more samples would be required to accurately instantiate the model. For the RT
clock they are 7% higher with a sample size of 100 which may be acceptable, but nearly 300%
higher when only 11 samples are considered.
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6.2.4 Model Aggregation

So far in this section, the model for a single node, node 7 has been instantiated and evaluated.
Whilst instantiating a single model for each node is possible, it can be time-consuming and
unpractical. Instead it would be bene�cial to have a single timing model instantiation for each
of the RC and RT clocks which can be used to represent all instances of the platform. In this
section, the aggregation of models is examined.
Continuing the examination of node 7, we aggregate the recorded samples from node 7 and

node 11. As when instantiating a model for a single node, outliers must �rst be removed. We
take the average calculated clock rate values of two nodes' for each temperature point. We
calculate the changes in clock rate as a percentage and �t the models given in Equation 2.17
and Equation 2.18 for RC and RT clocks, respectively.
Figure 6.7 and Figure 6.8 show the model �ttings for the average of two nodes for RC and

RT clocks, respectively. Average RSS increases in percentage of RC clock and RT clock relative
to average RSS of only considering node 7 are 25.00% and 7.66%, respectively.
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Figure 6.7: Model �ttings of average of two
nodes for RC clock.
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Figure 6.8: Model �ttings of average of two
nodes for RT clock.

To further examine aggregation, we aggregate three nodes (7, 11 and 13). Again we �rst
remove outliers of nodes individually, and take the average clock time values of the three
nodes' data for each temperature. We then calculate processing time changes in percent and
�t the models.
Figure 6.9 and Figure 6.10 show the model �ttings of the average of the three nodes for RC

and RT clocks, respectively. Average RSS increases in percentage of RC clock and RT clock
relative to average RSS of node 7 are 88.05% and 127.50%, respectively.

6.2.5 Model Bounding

The model provides limited advantages in helping protocol design/selection. Instead upper and
lower bounds around the model would be more bene�cial. Bounding is necessary to calculate
protocol elements such as guard times. We calculate the bounds around the model by selecting
a positive o�set for the upper bound and a negative o�set for the lower bound. These individual

Copyright © 2013 RELYonIT consortium: all rights reserved page 45



RELYonIT
Dependability for the Internet of Things

Report on
Learning Models Parameters

25 30 35 40 45 50 55
−2

0

2

4

6

8

10

12

Temperature (°C)

P
ro

ce
ss

in
g 

tim
e 

ch
an

ge
 (

%
)

 

 

Average of three nodes
Model for average of three nodes

Figure 6.9: Aggregated model �ttings of three
nodes for RC clock.
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Figure 6.10: Aggregated model �ttings of
three nodes for RT clock.

o�sets will be calculated to include X percent of measurement points. We selected 80% for the
value of X.
To investigate bounding, we take the aggregated model for the two nodes used in the previous

section. For both models we calculate the upper and lower bounds which would include 80% of
samples. The o�set to the model for upper bound for the RC-Clock was calculated as 0.3015
and the lower bound o�set was calculated as 0.5. For the RT-Clock the o�set for both the
upper and lower bound was calculated as 0.001.
Figure 6.11 and Figure 6.12 illustrates these bounds around the respective models. To evalu-

ate how e�ective these bounds are, we take data collected from a di�erent node (node 13) and
measure how well the model with bounds �ts the measurements for this node. In Figure 6.11,
36% of measured points lie within the calculated bounds of the model. In Figure 6.12, 45% of
measured point lie within the calculated model. For both models, the percentage of measured
sample points of node 13 that �t within the model is low. Whilst this can be increased by
increasing the bound interval of 80% for higher accuracy, nodes such as 13 whose data is found
to be signi�cantly di�erent to other nodes should be included in the initial aggregation.
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Figure 6.11: Aggregated model �ttings to
node 13 with bounds for RC
clock.
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Figure 6.12: Aggregated model �ttings to
node 13 with bounds for RT
clock.
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7 Conclusions

In Deliverable D-1.1 we developed generic environmental and platform models which can be
used to estimate the performance of sensornet deployments and identify optimal operating
con�guration. Focus has been on environmental aspects of temperature and interference and
the platform aspects of timing and receiver signal strength. Over the last �ve months these
earlier models have seen further work which has led to a number of re�nements.
For these models to be e�ective, they must be �tted to speci�c deployment environments

and platforms. For this �tting to be possible, tools are required to collect the necessary data
to parametrise these models. This document has presented tools for collecting temperature,
interference, signal strength and timing data from the deployment environment and platforms
used for deployment. It was shown how example datasets collected via these tools can be used
to parametrise the developed models. Aggregation and bounding methods for each model were
evaluated to minimise computational requirements of using these to select optimal operating
con�gurations in WP3.
For our next steps, we plan to use these parametrised models to replicate deployment condi-

tions to develop and optimise communication protocols. Tools for runtime assurance must also
be developed which will be initially based upon the tools described in this deliverable but will
have to work with a much limited resource set to run alongside deployed applications.
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