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Executive Summary

A central component of the RELYonIT approach are software tools to automati-

cally select, parameterize, and adapt Internet of Things protocols. This deliverable
describes the software artifacts created within the project, that allow the user to select protocols
and to generate and parameter con�gurations based on models of the scenario and an abstract
speci�cation of dependability requirements. The three main tasks are addressed individually,
but the interaction of the individual tools is also covered.

A �rst step to build a dependable Internet of Things application is the selection

of suitable protocols. In RELYonIT we support this task with a decision support system
that, based on a careful analysis of di�erent protocols, provides hints about which protocols
are most suited for a speci�c environment and scenarios. We compare three state-of-the-art
data-collection protocols under six di�erent properties: temperature, interference, mobility,
high density, large scales and high o�ered load. Furthermore, based on the insights obtained
from our extensive experiments, we propose a new data collection protocol called Evergreen,
which overcomes some of the limitations of the state of the art.

To optimally meet the challenges of an environment and deliver the desired per-

formance, most protocols require a careful tuning. The selection of good parameter
settings usually requires good knowledge of the employed technology and the speci�cs of the
environment. In RELYonIT we reduce the involved challenges by providing a tool that auto-
matically selects near-optimal parameter values. The tool employs environment models based
on previously collected environment traces, platform models that characterize the platform re-
sponse, and models of the employed protocols. The selection is guided by a formal speci�cation
of the user requirements employing the format introduced in D-3.1 [18]. Output of the tool is
a protocol con�guration that can be deployed along the application. An run-time component
handles con�guration of the protocols and enables the use of several situation-dependent con-
�gurations.

Dependable operation should be ensured even under unexpected deterioration

of the environment. As the environment models depend on empirically data collected prior
to the deployment, it is possible that the environment changes in unpredicted ways, which
invalidates the model assumptions. In this case, the previously generated con�guration may
be invalidated and is unable to ensure the expected performance anymore. Situations like this
are reported to the user by the run-time assurance system developed in task T1.4 [6], but the
user reaction may require some time. To prevent a severe deterioration of the performance and
dependability of the application, a run-time adaptation framework tries to adapt the parameter
values to the new environment in a best-e�ort fashion.

Copyright © 2015 RELYonIT consortium: all rights reserved page 7



1 Introduction

This deliverable describes the protocol selection, parameterization, and adaptation that en-
ables RELYonIT to deliver Internet of Things applications that still operate according to user-
speci�ed performance requirements even under adverse environmental conditions.
Protocol selection employs a �cook book� approach to guide the selection of suitable com-

munication protocols based on the properties of the targeted application. Di�erent protocols
often excel in one environment or task while they deliver a poor performance under di�erent
conditions. Our selection process enables a user to make the right choices without the need
for an extensive background in wireless sensing or wireless communication. This component is
described in detail in Chapter 2.
To ensure an optimal performance of the selected protocols, they also need to be tuned to well

match the environment of the targeted application. Our protocol parameterization provides a
framework for the automatic con�guration of protocols based on user-provided dependability
requirements and models of the environment, the platform response and the protocol behavior.
These models were developed as part of WP1 and WP2. In addition, this necessitates a
speci�cation language for the dependability requirements. However, dependability requirements
may vary across the lifetime of an application, hence, these speci�cation techniques need to be
integrated with existing programming models and languages for WSAN. This was the subject
of Task 3.1 and an extensive description can be found in deliverable D-3.1 [18]. The actual
parameterization process and the required tools are described in Chapter 3.
Finally, the run-time assurance developed in Task 1.4 and described in deliverable D-1.3 [6]

may detect changes of environmental models during the operation of the deployed system.
Depending on the application requirements, it may not be possible to halt the application in
order to deploy a new set of protocols. With the help of run-time adaptation, however, the
parameters of the protocols may be adjusted during runtime without halting application execu-
tion. Chapter 4 is concerned with the problem of selecting appropriate protocol con�gurations
to re�ect a changed environmental model, and installing these con�gurations into a running
network.

Copyright © 2015 RELYonIT consortium: all rights reserved page 8



2 Protocol Selection

Protocol selection for Internet of Things applications is a very complex task. Selecting the
�right� protocol among the many options available is di�cult not only for the general user, but
also for the expert in the domain. The reasons for this complexity are three-fold: (i) the various
scenarios IoT networks are exposed to, (ii) the di�erent requirements of the applications (some
want to maximize delivery rate, while others may want to maximize throughput or minimize
energy consumption) and (iii) the limited resources of the devices in terms of energy, memory,
communication, and computation power. These three factors have lead to the implementation of
application-speci�c protocols, where the methods are tailored to suit the unique triple consisting
of <scenario, requirements, resources>. If resources were abundant, we could design a general-
purpose protocol. Unfortunately that is not the case for Internet of Things applications, and
hence, there is no one-size-�ts-all protocol.
The lack of a general-purpose protocol puts the end user in a great dilemma. The user may

not be able to design a new protocol to suit her needs, and she will need to choose the best
option among the alternatives. As stated before, this task is not simple. In this chapter, we
propose a methodology for selecting protocols, and use this methodology to provide a protocol-
selection framework for three of the most popular collection protocols available in the literature.
We also use our insights to design a pseudo general-purpose protocol called Evergreen, which
will hopefully facilitate the Internet of Things deployments.

2.1 A cookbook for protocol selection

The process of selecting the �best protocol� for a particular scenario requires a systematic ap-
proach to construct a decision table. That is, a table (or method) that will allow us to �nd
the protocol that has the closest performance to our needs. As described next, the systematic
approach we propose for selecting a protocol requires four basic steps. The �rst three steps
consist of identifying the properties of the environment (mobility, temperature, interference),
identifying the metrics of interest (delivery rate, throughput, energy consumption), and eval-
uating di�erent network parameters (o�ered load, scalability, density). These three steps and
their interactions are depicted in Figure 2.1. With this information, the �nal step is to use a
weighted average method to identify the best protocol for the given circumstances.
Initially, a user will provide a scenario where to deploy the network and the expected per-

formance. For example, a user may need to monitor a factory and obtain information every
second from each machine. After the scenario of interest is de�ned, the �rst step is to identify
its properties.

Step 1: Identifying the properties of the environment. This step is required because
environmental conditions are usually outside the user's control and they can have a dramatic

Copyright © 2015 RELYonIT consortium: all rights reserved page 9
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Figure 2.1: Protocol feedback loop

impact in the underlying communication structure of the network. We identi�ed three impor-
tant environmental properties a�ecting the dynamics of the network.

1. Temperature, which changes the connectivity among nodes due its negative e�ect on link
quality.

2. Interference � like temperature � a�ects the link quality, but it does so at a much faster
rate (milliseconds as compared to several tens of minutes in the case of temperature).

3. Mobility, which leads to the most dramatic changes in terms of the underlying communi-
cation structure.

Once these properties have been identi�ed and quanti�ed, the user should use a testbed
or scenario that closely resembles these environmental conditions to test the protocols. Else,
the resulting performance may not be the same to what will be observed in the �nal deployment.

Step 2: Identify the metrics of interest. In principle, we would like a network to provide
as much data as possible with as high throughput as possible and lasting for as long possible.
There are three de-facto metrics used to capture this behavior:

1. Delivery ratio, which is the fraction of packets arriving at the sink(s) compared to the
total number of packets sent by the sources.

2. Throughput, which is the number of data packets received at the sink (root node) in a
second.

3. Energy consumption, which is usually captured by the duty cycle of the radio.

More often than not, these three metrics present trade-o�s. For example, a higher delivery
rate or high throughput, usually requires a higher energy consumption. In this report we focus
on the trade-o� between delivery rate and duty cycle (energy). At the end of this chapter we
show a method consisting of a single parameter that allows the user to put more �weight� on

Copyright © 2015 RELYonIT consortium: all rights reserved page 10



RELYonIT
Dependability for the Internet of Things

Report on Protocol Selection, Parameterization, and Runtime Adaptation

the preferred metric.

Packet duplicates. Besides the three metrics mentioned before, in our evaluation we also
measure the number of duplicated packets arriving at the sink. Packet duplicates is not really
a network metric, but we use it because it gives important insights on the operation of various
protocols. When duplicates increase, the bandwidth saturates. This can a�ect negatively the
delivery ratio, throughput and energy consumption. In some cases, when the duplicates are
too high, the network collapses.

Step 3: Evaluate protocols. The �rst and second steps of our approach provide hard
requirements. The properties of the scenario (Step 1) are a hard input, and the desired per-
formance (Step 2) is a hard output. We can not change them. There is however a �exible
input that allows the user to have a deeper insight into the performance of the system: the
properties of the network. Once the scenario of interest has been assessed (Step 1) and the
metrics quanti�ed (Step 2), the user can start testing protocols. We identi�ed three general
properties that a�ect the performance of protocols but that are under the control of the user.

1. Scalability, which is related to the size of the network in terms of number of nodes.

2. Density, which is de�ned as the average number of neighbors observed by all nodes.

3. O�ered load, which is the total number of packets generated by the sources per unit of
time.

Scalability and density are related to the diameter and average degree of the communication
graph, which are known to be two central properties in graph analysis. The o�ered load is a
general parameter that allows the user to control the amount of information �owing in the net-
work. These �ows should be high enough to provide the desired performance, but low enough
to avoid saturating the network.

Step 4: Select protocol. We propose a weighted average method to select the right pro-
tocol. In this method, the users assign weights to the metrics identi�ed in Step 2 (depending
on their relative performance), and then, use the information collected in Step 3 to identify
the protocol with the best performance according to the environmental parameters identi�ed
in Step 1. This method is explained in detail at the end of this Chapter.

Protocol evaluation and the exponential growth of the solution space. The most important
hurdle to overcome in a protocol selection process is the exponential growth of the evaluation
space. There are many protocols at the Data Link and Network Layers. Evaluating all the
potential combinations of protocols at both layers under various network properties can easily
become a large and time consuming problem. Consider for example a user willing to evaluate 2
protocols at the Data Link Layer, 4 protocol at Network Layer, and 3 operational levels (high,
medium, low) for each of the six `inputs': density, scalability, tra�c patterns, temperature,
interference and mobility. This evaluation, which may not be even considered a thorough one,
would imply 144 experiments (2 ∗ 4 ∗ 3 ∗ 6)! This could demand many months of intensive
work and would not even include the potential permutations of inputs; for instance, di�erent

Copyright © 2015 RELYonIT consortium: all rights reserved page 11
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Figure 2.2: Protocol selection

combinations of temperature, interference and mobility levels. While there is no clear solution
to this problem, having some expert knowledge can reduce the solution space by starting with
some educated guesses. Examples of educated guesses done in our evaluation are given next.
Our overall approach and the focus of our evaluation at the Network Layer. Figure 2.2

summarizes our approach. We consider three di�erent environmental properties: temperature,
interference and mobility. As mentioned before these are hard conditions, i.e. they are outside
the user's control. As for the network properties, we evaluate the network size (diameter of
graph), node density and o�ered load. The o�ered load plays a key role on the number of packet
duplicates. At the MAC Layer, we use BOX-MAC, which is a widely used protocol leveraging
a technique called Low Power Listening. At the Network Layer, we focus on three protocols
that have di�erent design principles: CTP, which targets networks with low dynamics; ORW,
which is designed to overcome dynamics with a low-overhead; and BCP, which is designed to
maximize the capacity of the network but at a relatively high overhead. The selections made
at the MAC and Network Layers are educated guesses based on our expertise in the area.
Our decision to focus the protocol selection process at the Network Layer is twofold. First,

in wireless networks, multi-hop distributed communication is not well understood from an
analytical standpoint, and hence, empirical approaches are even more important (as opposed
to say MAC protocols for which analytical models are better understood). The second reason
is completeness. Due to the �rst reason, most of our new models and protocols have focused
at the MAC Layer (D-2.3). To provide the user with a complete view of the network stack, we
decided to apply our protocol selection approach to the Network Layer. That said, our steps
are general enough to be applied to MAC Layer protocols as well.

2.1.1 Testbeds Used

Ideally one would test all protocols in-situ as part of real deployments, but that is practically
infeasible and prohibits the controlled change of the environmental parameters, so instead
we studied them on testbeds except in case of mobility, for which we used simulations. We
have used three di�erent testbeds: Indriya [7] with 101 TelosB motes, TempLab [4] with 17
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Maxfor MTM-CM5000MSP motes (TelosB replicas), and Twist [13] with 88 TmoteSky motes1

The later is part of the testbed available within the FIRE initiative. All of them run the
TinyOS operating system. For the mobility experiments we used Avrora [23], an instruction-
level accurate micro-controller simulator. For each experiment we con�gured all nodes to send
data to the sink. Data packets carry a payload of four bytes, and are periodically injected
into the network with some randomization to avoid peak loads and associated collisions at the
physical/link layer. For each experiment we log the packet delivery ratio at the sink, and the
average energy consumption of the nodes by means of soft metering (i.e. recording the actual
duty cycle of the radio).

2.2 Description of Protocols

This section brie�y describes the three protocols used in our evaluation: ORW, BCP and CTP.
These three protocols represent the state-of-the-art in data collection for sensor networks.

2.2.1 Opportunistic Routing Protocol

Recently, the Opportunistic Routing Protocol for WSN (ORW) was proposed [15]. In ORW,
instead of sending a data packet to a speci�c neighbor, a node n sends a packet to any neighbor
that is closer to the sink that itself. This mechanism is called anycast and works as follows:
n sends a packet containing its routing cost to the sink; if a neighboring node m has a lower
routing cost than n, then it acknowledges the packet to n and continues the forwarding process;
if on the other hand, the routing cost of the neighbor m is higher, the data packet is silently
dropped.
The advantage of ORW is that the end-to-end delay is reduced signi�cantly because node n

does not have to wait for a speci�c neighboring node to wake-up to receive the data packet.
To the contrary, the very �rst neighbor that wakes up from sleep and has a smaller cost to the
root node, replies back with an acknowledgment. Thus, at each hop several milliseconds are
saved, accumulating into a signi�cant amount of time over the whole length of the data path.
Another advantage of the ORW forwarding scheme is that data packets �ow through multiple
paths instead of the majority of packets taking the same path to the root node. These diverse
paths increase network lifetime by distributing the forwarding workload among di�erent nodes
and also avoid congestion in the network.

2.2.2 Backpressure Collection Protocol

Typically, in collection protocols each node maintains a data queue to forward packets. Instead
of forwarding a data packet immediately, packets are �rst placed in the forwarding queue when
received from a neighboring node or from the application running on the given node. The
Backpressure Collection Protocol (BCP) forwards packets to the neighbor with the shortest
queue. This method maximizes the capacity of the network [17]. The method can be succinctly
described in the following manner. Considering that the sink `absorbs' all packets, the following
gradient is formed by the nodes' queues: the closer the node is to the sink, the shorter its

1Twist normally comprises 102 nodes, but at the time of writing only 88 were available due to construction
work at the facility.
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Static Mobility Network O�ered Temp. Interf.
Size Load

CTP 7
ORW 3 7 3
BCP 7 7
Evergreen 3 3 3

Table 2.1: Summary of Results: A protocol's breaking point is marked with 7. A protocol
outperforming every other protocols in a scenario is marked with 3. A protocol is
considered best for a given scenario if it outperforms other protocols and worst if it
breaks in that scenario.

queue should be. Thus, each node n sends information to the sink by forwarding packets to the
immediate neighbor m that has a shorter queue than its own and also the shortest among its
neighbors. BCP has one di�erentiating characteristic in contrast to typical collection protocols:
nodes do not maintain end-to-end routing paths. The lack of end-to-end paths results in fast
route convergence which is especially useful if nodes are mobile. BCP is shown to outperform
CTP signi�cantly when the root node is mobile [17].

2.2.3 Collection Tree Protocol

The Collection Tree Protocol (CTP) is a well-known and widely used collection protocol [12].
Unlike ORW, CTP is a deterministic protocol where a node always opts for the shortest route
towards a root, based on link quality estimations. CTP uses adaptive beaconing (a.k.a Trickle
timer) instead of sending periodic control messages, thus reducing protocol overhead [12, 24].
Furthermore, CTP also introduced data-path validation to avoid routing loops and uses an
accurate link quality estimation (ETX) to measure the quality of each link [11]. Overall CTP
works very well if the network is stable, and is shown to deliver on average more than 90% data
packets while using only 3% duty cycle under moderate o�ered loads [12]. However, CTP's
performance deteriorates when the nodes are mobile or when the network links are volatile
with rapidly changing link qualities [17].

2.2.4 Evergreen

Initial experimentation with the three collection protocols just described showed that there
was ample room for improvement, because each individual protocol would break, i.e. perform
badly, in some speci�c scenario. We therefore decided to take a step further, to design the more
resilient protocol Evergreen as described in D-2.1 [27]. As we will show in Section 2.3, CTP
breaks when nodes become mobile, ORW has issues with increased tra�c loads, and BCP's
performance deteriorates when the network diameter grows. Evergreen does not strive for being
the best in one situation, but to show resilience to a large number of (environmental) factors.
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2.3 Evaluation of Protocols

This section studies how the four collection protocols (Evergreen, CTP, ORW, and BCP) per-
form in the �ve scenarios of (i) o�ered load, (ii) network size, (iii) temperature, (iv) interference,
and (v) mobility. To this end, three testbeds are used as discussed in Section 2.1.1. Each ex-
periment was executed for at least 40 minutes. In all the experiments only a single root node,
located at one edge of the network, is used as the destination of data packets. Every non-root
node of the network generates data packets in a uniformly distributed interval. To take the
number of nodes in the network into account, the reported o�ered load is the aggregated num-
ber of packets injected into the network. That is, the o�ered load is calculated as the median
of the interval used to send data packets by the nodes, multiplied by the total number of non-
root nodes. Most of the experiments were carried out with an o�ered (aggregated) load of two
packets per second. In all cases the duty cycle period of the default TinyOS MAC protocol was
set to one second.
This report summarizes the results of hundreds of experiments carried out during a whole

year. For these experiments, the source code of CTP and ORWwas acquired from the respective
public repositories, however, BCP's code was acquired directly from the authors of the original
report. During this research some bugs were also �xed in the existing protocols, and reported
to their original authors [14].
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Figure 2.3: Base Case: A small static network with o�ered load of two packets per second.

2.3.1 Base Case: Static Network

We start with a base case in which every protocol should perform reasonably well. We carefully
select our base case such that it has no characteristic leading to inadequate performance of a
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Figure 2.5: O�ered load variations on Indriya.
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Figure 2.6: O�ered load variations on Twist.
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Figure 2.7: Temperature variations using TempLab.
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protocol. This is why we chose a small network, TempLab, with only 17 nodes and an o�ered
load of two packets per second. Furthermore, the network does not experience any noticeable
interference or temperature variation during the course of the experiment. It is shown in Fig. 2.3
that all four protocols achieve a delivery ratio of more than 95%. However, the major di�erence
is in the average radio duty cycle required by nodes to forward packets to the root node. ORW
outperforms all protocols, showing a duty cycle 60.2% smaller than the one of CTP. As explained
in Section 2.2.1, a mote using ORW uses anycast routing thus reducing the time it needs to
forward data packets. Based on these results, we marked ORW as the best performing protocol
for this scenario in Table 2.1. To our surprise, Evergreen, being a deterministic protocol, has
a similar energy consumption as ORW. To be precise, Evergreen consumes 54.8% less energy
than CTP in terms of average duty cycle, and only 13.7% more in comparison to ORW. We
determined that Evergreen's signi�cant reduction in energy consumption as compared to CTP,
is due to its bursty packet forwarding and smart control messages. Furthermore, compared to
CTP, Evergreen has the highest throughput among all protocols, delivering 17% more packets
in the same time. This is because Evergreen has many optimizations to reduce the time
between consecutive packets. Finally, Fig. 2.3 also shows that the number of duplicate packets
received at the root node during the 40 minute long experiments is also insigni�cant under
these favorable conditions as each protocol generates very few duplicates that have no e�ect
on the protocol performance. The subsequent section builds on this base case to stress the
protocols, in order to �nd their breaking point.

2.3.2 Network Size

We have used three testbeds of di�erent diameters and number of nodes (i.e., 17, 88 and
101). Furthermore, we have divided the two bigger testbeds, Twist and Indriya, into two
smaller testbeds of 35 closely located nodes. Thus in total the stress testing of the network
size variation is carried out on �ve testbeds. An o�ered load of 2 packets per second is used
for each experiment. For Evergreen, CTP, and ORW changes in network size do not result in
any signi�cant performance deterioration as their delivery ratio remains above 90% as shown
in Fig. 2.4. However, BCP experiences more than 30% reduction in delivery ratio on bigger
networks as compared to the 17 node TempLab network. This is because BCP uses the number
of queued packets to construct a gradient and nodes at the perimeter of networks with large
diameters cannot hold enough packets; the induced queue over�ows lead to random forwarding
of packets in turn aggravating the problem as packets ��oat� longer in the network, e�ectively
taking up more space in the forwarding queues. One solution is to increase the forwarding
queue size as the network diameter increases but this solution is not generic and will not scale
in a very large network of memory-constrained wireless motes. We expect BCP's performance
to further deteriorate and eventually break as the network size increases.

2.3.3 O�ered Load

To measure the e�ect of o�ered load we used �ve o�ered load variations on the Indriya and Twist
testbeds for each of the four collection protocols. Each protocol's performance deteriorates with
the increase of o�ered tra�c load, however, ORW is e�ected the most. It is shown in Fig. 2.5
and Fig. 2.6 that ORW experiences a delivery ratio reduction of 90% and 82% on Indriya and
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Twist testbed respectively. This is because ORW exhibits a drastic increase in packet duplicates
due to the anycast routing scheme used, as explained in Section 2.2.1. These duplicate packets
cause congestion in the network, resulting in dropping many data packets as well as increasing
the energy consumption of the motes. As shown in Fig. 2.5, and Fig. 2.6, ORW's average duty
cycle increases by up to 342%. Thus we believe that the use of ORW should be avoided in high
o�ered load situations. In contrast, Evergreen outperforms the other protocols signi�cantly
under high o�ered load. This is mainly because of two reasons: Evergreen's forwarding queue
management employees a strategy to avoid paths with motes having forwarding queues �lled
almost to their capacity. Furthermore, Evergreen is optimized to increase the packet forwarding
speed, thus reducing the chances of a forwarding queue being over�owed due to high o�ered
load. Finally, it is shown in Fig. 2.5 and Fig. 2.6, that Evergreen has a delivery ratio of more
than 25% as compared to it peers under high o�ered load situations while at the same time
consuming the least amount of energy. Based on these results, we marked Evergreen as the
best performing protocol in the high o�ered load scenario in Table 2.1, while we marked ORW
as a protocol that breaks.

2.3.4 Temperature

In this subsection we present temperature variation e�ects using the TempLab testbed. Temp-
Lab takes existing temperature traces recorded in outdoor environments over a long time period
as input and reproduces them in a much shorter timer period in the Lab settings using infra-
red heating lamps [4]. For our experiment, a 40 minute long temperature trace was selected
that emulates a very fast temperature variation of 1.4 ◦C per minute. We have recorded each
protocol's performance with and without the use of the heating lamps. It is shown in Fig. 2.7,
that each collection protocol copes well with temperature variations since even in the lab settings
those variations take several minutes to take place, which is slow enough for a routing protocol
to adopt. Thus, we have not recorded any signi�cant changes in the delivery ratio. However,
the average radio duty cycle to forward a packet to the root node increased signi�cantly with
temperature variations as shown in Fig. 2.7. This is because a node has to �nd new data
paths to avoid heated nodes, which could lead to extra control messages being generated in the
network. ORW scales better than the other protocols, because unlike CTP and EG, ORW does
not use the Trickle timer or other control messages to cope with the network changes, thus it
conserves energy. It is shown in Fig. 2.7 that ORW has the smallest increase in the average
duty cycle as compared to the other three protocols. Therefore, we have we marked ORW as
the best performing protocol in this scenario in Table 2.1.

2.3.5 Interference

We have used the JamLab[3] software to mimic Wi-Fi interference in the Twist network. Four
nodes of Twist run JamLab, whereas the rest of the nodes run the collection protocol under
evaluation. Instead of having continuous interference, the jammers are switched on and o�
for a period of �ve minutes, to notice how a given protocol copes with the sudden in�ux of
interference. Two sets of experiments were carried out. In the �rst set, each protocol was
evaluated without using JamLab whereas in the second, each protocol was evaluated with the
periodic jamming. The summary of results with and without interference are shown in Fig. 2.8.
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Figure 2.9: Mobility: Mobile root node with two di�erent speed variations.

Evergreen has the highest delivery ratio in the network with interference, followed by ORW.
Furthermore, Evergreen has the smallest increase in energy consumption while coping with
interference as good as ORW. Therefore, we marked Evergreen as the best performing protocol
in this scenario in Table 2.1.

2.3.6 Mobility

Mobility is desirable for supporting a variety of Internet of Things applications. We have used
the Avrora simulator [23] to evaluate the performance of collection protocols under mobility,
as the three testbeds used in this report did not have mobile nodes available for their regular
users. A 6× 6 grid network of 36 nodes was used, in which the root node is initially located at
the center of the network. What is evaluated is how each collection protocol behaves when the
root is mobile. We consider root mobility an extreme scenario to stress test collection protocols
as the whole collection tree has to be readjusted whenever the root changes its position. Three
sets of experiments were conducted for each protocol with root mobility speeds of 0, 1 and
5 units using the random waypoint mobility model [1]. When the root node is mobile, CTP
experienced high delivery ratio reduction as well as a drastic increase in the energy consumption
as compared to the scenario where the root node is static. It is shown in Fig. 2.9, that CTP
has a delivery ratio reduction of 83.81% and a 11.5 times increase in the average duty cycle to
transmit a single packet. This is because CTP's root node cannot detect mobility, so it does
not announce itself as it moves to a new location, leading to a stale collection tree. In contrast,
Evergreen has a mechanism for the root node to detect mobility and announce itself to keep the
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collection tree up to date. Fig. 2.9 shows that Evergreen comprehensively outperforms all the
other protocols under the mobile root node scenario. Thus we have listed Evergreen as the best
performer and CTP as the protocol that breaks in this scenario in Table 2.1. To our surprise,
ORW also performs reasonably well in the mobile root node scenario. ORW uses opportunistic
routing, where packets are transmitted to the next available (awake) mote with the slightest
route improvement. Unlike CTP a node does not have to announce its existence to receive a
data packet; instead a node can acknowledge any packet that it hears during anycast. The
root node takes advantage of this by accepting any packet it can hear, also when the routing
information in the packet has become outdated due to movement. With CTP a root node will
not receive such packets as they are explicitly addressed to some other node. Evergreen also
has unicast routing, however unlike CTP, Evergreen has a mobility detection mechanism that
allows a node to advertise itself as it moves in the network, keeping the routing tree always
up-to-date.

2.4 Protocol Selection Algorithm

Our protocol selection method focuses on the trade-o� between delivery ratio, energy consump-
tion and throughput. In principle, we would like to get as many packets as possible as fast as
possible, using very little energy.
Before proceeding it is important to discuss two points about our metrics. First, a commonly

used metric to combine energy consumption and delivery ratio is to divide the delivery ratio by
the duty cycle, which indicates the average amount of energy required to send a single packet to
the sink. Using this metric has a problem however. Considering a scenario with 100% delivery
rate and 10% duty cycle and an scenario with 30% delivery rate and 3% duty cycle during
the same period of time. Both scenarios would have the same dr

dc value, but the �rst option is
preferable because the delivery ratio is the most important metric in data collection protocols.
Second, in the project we have focused on latency as a metric for delay and not throughput.
We did this because in testbeds it is easier to measure throughput in a more accurate manner.
While delay and throughput are related (a lower delay leads to a higher throughput), they are
not exactly the same. Our equations and normalization method are however the same and
applicable in case latency is used.
To accommodate for this type of outcomes we use a weighted average methodology. Table 2.2

lists the delivery ratio (dr) of each protocol under the various environmental and networking
conditions. Whereas, Table 2.3 presents the delivery ratio divided by the duty cycle (drdc ) and
Table 2.4 lists the throughput (tp) of each protocol. Our method combines the information in
these three tables. At �rst glance it may look redundant to consider the delivery rate twice,
one on its own and also as part of the dr

dc metric (energy). But as explained before, we decided
to do this because measuring energy on its own is not as relevant as connecting it to its delivery
ratio.
Our method proceeds in the following manner. For each type of scenario xi, where i= 1

(static), 2 (mobile), 3 (size), 4 (load), 5 (temperature), 6 (interference); we �rst normalize the
dr, dr

dc and tp metrics. For instance, for the static scenario, the delivery rate of Evergreen is
the highest and we set it to be the baseline, equal to 0. The other protocols are normalized
with respect to the baseline. For example, for dr in the static case, CTP would have a value of
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Static Mobility Network O�ered Temp Interference
Size Load

CTP 96.1 16.1 90.1 66.0 88.8 58.0
Evergreen 97.3 68.5 94.9 82.0 91.0 70.0
ORW 93.3 50.7 93.0 9.0 85.5 64.0
BCP 94.6 39.0 58.8 38.0 89.8 47.0

Table 2.2: Delivery ratio: The percentage of packets delivered successfully at the root node.

Static Mobility Network O�ered Temp Interference
Size Load

CTP 7.77 0.49 16.36 0.99 4.39 2.74
EG 17.17 3.08 20.10 1.37 8.78 2.95
ORW 19.53 2.44 38.29 0.11 14.23 2.38
BCP 8.33 1.61 10.63 0.92 9.80 3.28

Table 2.3: Ratio of duty cycle and the packet delivered, i.e. dr
dc

|97.3−96.1|
97.3 × 100 = 1.2. Let us denote the normalized versions of dr, dr

dc , and tp with d̂r,
d̂r
d̂c

and

t̂p symbols respectively. Then, the relative `rank' of each protocol p for the network settings
x1, x2, ..., xn is calculated as follows:

Rp =W1

{
xn∑

y=xi

d̂r
p

y

}
+W2

{
xn∑

y=xi

d̂r
p

y

d̂c
p

y

}
+W3

{
xn∑

y=xi

t̂p
p
y

}
(2.1)

where W1, W2 and W3 are positive constants with a constraint that their sum should al-
ways equal to 1 2. The value of these constants indicates the preference between duty cycle,
packet delivery ratio and throughput. Based on the above equation three tables are generated.
Table 2.5, Table 2.6, and Table 2.7 such that each table gives preference to a di�erent metric
with the selection of the constants. We use abbreviations to represent combinations of network
settings. S is used for Static (x1), M for Mobility (x2), N for Network Size (x3), O for O�ered
Load (x4), T for Temperature (x5) and I for Interference (x6). Table 2.5 shows the results
when the delivery ratio is given higher priority over the duty cycle and throughput. In this
case, Evergreen is the better choice among almost all the cases. In contrast, when duty cycling
(energy) is given more preference (Table 2.6), ORW outperforms in the majority of cases as
ORW consumes signi�cantly less energy as compared to all other protocols. Finally, Table 2.7
gives results when throughput is given a higher preference than duty cycling and delivery ratio.
Note that there could be scenarios which are best represented by di�erent values of W1, W2

and W3. However covering all these scenarios in this report is not possible, hence only three
extreme cases are presented here to explain our ranking approach.

2Note that further metrics such as latency could be added in a similar way
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Static Network O�ered Temp Interference
Size Load

CTP 1.33 2.30 81.46 4.16 1.26
EG 1.56 2.42 101.79 6.58 1.51
ORW 1.55 2.34 11.11 7.06 1.40
BCP 1.26 1.44 57.12 6.36 1.03

Table 2.4: Throughput: Average number of data packets received at the root node in a second.

Network CTP Evergreen ORW BCP Network CTP Evergreen ORW BCP

Settings Rank Rank Rank Rank Settings Rank Rank Rank Rank

S 8.47 1.21 3.32 9.88 SM 78.04 1.21 26.14 49.08

SMN 88.24 5.96 27.97 90.75 SMNO 108.64 5.96 117.30 141.35

SMNOT 121.62 10.46 122.12 146.52 SMNOTI 138.65 11.47 132.46 175.98

SMNOI 125.68 6.97 127.64 170.81 SMNT 101.22 10.46 32.79 95.92

SMNTI 118.26 11.47 43.13 125.38 SMNI 105.28 6.97 38.31 120.20

SMO 98.44 1.21 115.46 99.68 SMOT 111.42 5.71 120.28 104.86

SMOTI 128.45 6.72 130.62 134.32 SMOI 115.47 2.22 125.80 129.14

SMT 91.02 5.71 30.96 54.25 SMTI 108.05 6.72 41.30 83.71

SMI 95.07 2.22 36.48 78.54 SN 18.67 5.96 5.16 51.54

SNO 39.07 5.96 94.48 102.15 SNOT 52.05 10.46 99.30 107.32

SNOTI 69.09 11.47 109.64 136.78 SNOI 56.11 6.97 104.82 131.61

SNT 31.65 10.46 9.97 56.72 SNTI 48.69 11.47 20.31 86.18

SNI 35.71 6.97 15.49 81.00 SO 28.87 1.21 92.65 60.48

SOT 41.85 5.71 97.46 65.66 SOTI 58.88 6.72 107.80 95.11

SOI 45.90 2.22 102.99 89.94 ST 21.45 5.71 8.14 15.05

STI 38.48 6.72 18.48 44.51 SI 25.50 2.22 13.66 39.33

M 69.57 0 22.82 39.20 MN 79.77 4.75 24.65 80.87

MNO 100.17 4.75 113.98 131.48 MNOT 113.15 9.25 118.80 136.65

MNOTI 130.19 10.26 129.13 166.11 MNOI 117.21 5.76 124.32 160.94

MNT 92.75 9.25 29.47 86.04 MNTI 109.79 10.26 39.81 115.50

MNI 96.81 5.76 34.99 110.33 MO 89.97 0 112.14 89.81

MOT 102.95 4.50 116.96 94.98 MOTI 119.98 5.51 127.30 124.44

MOI 107.00 1.01 122.48 119.27 MT 82.55 4.50 27.64 44.37

MTI 99.58 5.51 37.97 73.83 MI 86.60 1.01 33.16 68.66

N 10.20 4.75 1.83 41.67 NO 30.60 4.75 91.16 92.28

NOT 43.58 9.25 95.98 97.45 NOTI 60.62 10.26 106.32 126.91

NOI 47.64 5.76 101.50 121.73 NT 23.18 9.25 6.65 46.84

NTI 40.22 10.26 16.99 76.30 NI 27.24 5.76 12.17 71.13

O 20.40 0 89.33 50.61 OT 33.38 4.50 94.14 55.78

OTI 50.41 5.51 104.48 85.24 OI 37.43 1.01 99.66 80.07

T 12.98 4.50 4.82 5.17 TI 30.01 5.51 15.16 34.63

I 17.03 1.01 10.34 29.46

Table 2.5: Delivery ratio preferred: Protocols ranking with W1 = 0.8, W2 = 0.1, and W3 = 0.1
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Network CTP Evergreen ORW BCP Network CTP Evergreen ORW BCP

Settings Rank Rank Rank Rank Settings Rank Rank Rank Rank

S 49.77 9.66 0.44 48.05 SM 124.61 9.66 19.57 90.58

SMN 171.42 47.67 20.07 156.20 SMNO 197.70 47.67 111.46 192.28

SMNOT 257.38 78.96 112.06 218.30 SMNOTI 273.99 87.05 135.63 224.76

SMNOI 214.31 55.76 135.03 198.74 SMNT 231.10 78.96 20.67 182.22

SMNTI 247.71 87.05 44.25 188.68 SMNI 188.04 55.76 43.64 162.66

SMO 150.89 9.66 110.96 126.66 SMOT 210.57 40.95 111.56 152.68

SMOTI 227.18 49.04 135.14 159.14 SMOI 167.50 17.75 134.54 133.12

SMT 184.29 40.95 20.18 116.60 SMTI 200.90 49.04 43.75 123.06

SMI 141.22 17.75 43.15 97.04 SN 96.58 47.67 0.94 113.67

SNO 122.85 47.67 92.33 149.75 SNOT 182.53 78.96 92.93 175.77

SNOTI 199.15 87.05 116.50 182.23 SNOI 139.47 55.76 115.90 156.21

SNT 156.26 78.96 1.54 139.69 SNTI 172.87 87.05 25.12 146.15

SNI 113.19 55.76 24.51 120.13 SO 76.04 9.66 91.83 84.14

SOT 135.72 40.95 92.43 110.16 SOTI 152.33 49.04 116.01 116.62

SOI 92.66 17.75 115.41 90.60 ST 109.45 40.95 1.05 74.07

STI 126.06 49.04 24.62 80.53 SI 66.38 17.75 24.02 54.51

M 74.85 0 19.13 42.53 MN 121.66 38.01 19.63 108.14

MNO 147.93 38.01 111.01 144.22 MNOT 207.61 69.30 111.61 170.24

MNOTI 224.23 77.38 135.19 176.70 MNOI 164.55 46.10 134.59 150.68

MNT 181.34 69.30 20.23 134.16 MNTI 197.95 77.38 43.80 140.62

MNI 138.27 46.10 43.20 114.60 MO 101.12 0 110.52 78.61

MOT 160.80 31.29 111.12 104.63 MOTI 177.41 39.38 134.69 111.09

MOI 117.74 8.09 134.09 85.07 MT 134.52 31.29 19.73 68.55

MTI 151.14 39.38 43.31 75.01 MI 91.46 8.09 42.70 48.99

N 46.81 38.01 0.50 65.62 NO 73.09 38.01 91.88 101.70

NOT 132.77 69.30 92.48 127.72 NOTI 149.38 77.38 116.06 134.18

NOI 89.70 46.10 115.46 108.16 NT 106.49 69.30 1.10 91.63

NTI 123.10 77.38 24.67 98.09 NI 63.42 46.10 24.07 72.07

O 26.28 0 91.39 36.08 OT 85.96 31.29 91.99 62.10

OTI 102.57 39.38 115.56 68.56 OI 42.89 8.09 114.96 42.54

T 59.68 31.29 0.60 26.02 TI 76.29 39.38 24.18 32.48

I 16.61 8.09 23.58 6.46

Table 2.6: Energy consumption preferred: Protocols ranking with W1 = 0.1, W2 = 0.8, and
W3 = 0.1
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Network CTP Evergreen ORW BCP Network CTP Evergreen ORW BCP

Settings Rank Rank Rank Rank Settings Rank Rank Rank Rank

S 17.82 1.21 0.68 21.17 SM 33.86 1.21 5.34 30.25

SMN 44.07 5.96 7.96 73.51 SMNO 64.80 5.96 97.33 117.27

SMNOT 104.81 15.17 97.93 128.37 SMNOTI 121.50 16.18 107.41 157.05

SMNOI 81.50 6.97 106.81 145.95 SMNT 84.08 15.17 8.56 84.60

SMNTI 100.78 16.18 18.04 113.28 SMNI 60.77 6.97 17.44 102.18

SMO 54.59 1.21 94.71 74.02 SMOT 94.60 10.42 95.31 85.11

SMOTI 111.30 11.43 104.79 113.79 SMOI 71.29 2.22 104.18 102.70

SMT 73.87 10.42 5.94 41.34 SMTI 90.57 11.43 15.42 70.02

SMI 50.56 2.22 14.81 58.93 SN 28.03 5.96 3.30 64.42

SNO 48.75 5.96 92.67 108.19 SNOT 88.76 15.17 93.27 119.29

SNOTI 105.46 16.18 102.75 147.97 SNOI 65.45 6.97 102.15 136.87

SNT 68.04 15.17 3.90 75.52 SNTI 84.73 16.18 13.38 104.20

SNI 44.72 6.97 12.78 93.10 SO 38.54 1.21 90.05 64.94

SOT 78.55 10.42 90.65 76.03 SOTI 95.25 11.43 100.13 104.71

SOI 55.24 2.22 99.52 93.61 ST 57.83 10.42 1.28 32.26

STI 74.52 11.43 10.75 60.94 SI 34.51 2.22 10.15 49.85

M 16.05 0 4.66 9.08 MN 26.25 4.75 7.28 52.34

MNO 46.98 4.75 96.66 96.11 MNOT 86.99 13.96 97.26 107.20

MNOTI 103.69 14.97 106.73 135.88 MNOI 63.68 5.76 106.13 124.78

MNT 66.26 13.96 7.89 63.43 MNTI 82.96 14.97 17.36 92.11

MNI 42.95 5.76 16.76 81.02 MO 36.77 0 94.03 52.85

MOT 76.78 9.21 94.63 63.95 MOTI 93.48 10.22 104.11 92.62

MOI 53.47 1.01 103.51 81.53 MT 56.05 9.21 5.26 20.18

MTI 72.75 10.22 14.74 48.85 MI 32.74 1.01 14.14 37.76

N 10.21 4.75 2.62 43.26 NO 30.93 4.75 91.99 87.03

NOT 70.94 13.96 92.60 98.12 NOTI 87.64 14.97 102.07 126.80

NOI 47.63 5.76 101.47 115.70 NT 50.22 13.96 3.23 54.35

NTI 66.91 14.97 12.70 83.03 NI 26.90 5.76 12.10 71.93

O 20.73 0 89.37 43.77 OT 60.73 9.21 89.97 54.86

OTI 77.43 10.22 99.45 83.54 OI 37.42 1.01 98.85 72.45

T 40.01 9.21 0.60 11.10 TI 56.71 10.22 10.08 39.77

I 16.70 1.01 9.48 28.68

Table 2.7: Throughput preferred: Protocols ranking with W1 = 0.1, W2 = 0.1, and W3 = 0.8
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2.4.1 Protocol Selection for Use Cases

In this subsection we present how our approach to the protocol selection problem applies to
two use cases studied by the RELYonIT consortium.

Smart Parking System As described in section 2.1, we follow three steps to select the best
algorithm for a particular scenario.

� Step 1: Identify the properties of the environment. Based on deliverable D-4.1, we choose
temperature (T ) and interference (I) as the environmental properties to take under con-
sideration.

� Step 2: Identify the metrics of interest. Delivery ratio is identi�ed as the most critical
metric for this use case. Imagine a driver reaching a parking spot designated by the
system, only to �nd it has been already occupied and the user was not informed since
data packets were not delivered. A scenario such as this would cause the driver to lose
con�dence in the system.

� Step 3: Select protocol. Based on Table 2.5, that favors throughput over delivery ratio and
radio duty cycle, we can see that the most suitable protocol for our use case is Evergreen.

Infrastructure Monitoring As above, we follow the same three steps that will lead us to
selecting the most appropriate protocol.

� Step 1: Identify the properties of the environment. The most important environmental
property for this use case is temperature (T ).

� Step 2: Identify the metrics of interest. In this use case, sensor nodes typically report
deltas of values or their gradient, thus not losing measurements is of critical importance.
We therefore select delivery ratio as the metric of interest.

� Step 3: Select protocol. Based on Table 2.5, that favors delivery ratio over throughput
and radio duty cycle, we choose Evergreen as the most suitable for this use case.
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3 Protocol Parameterization

The protocol parameterization framework is a central component of the RELYonIT software
architecture, it generates protocol con�gurations that meet previously speci�ed requirements.
The actual parametrization component relies on mathematical optimization to determine a near
optimal protocol con�guration for a speci�c application based on a user-generated requirement
speci�cation and instances of environment, platform, and protocols models. Especially the
environment model instances are adapted to the application by collecting relevant environ-
ment data before the actual deployment. The data collection employs the tools described in
deliverable D-1.3 [6].
The protocol con�guration generated by the parametrization component is deployed along

with the application code and the implementation of the employed Internet of Things protocols.
A runtime support component enables the use of di�erent con�gurations based on the current
situation the system is in. Additional runtime components within the RELYonIT framework
monitor the model assumptions that were used while generating the con�gurations and alert
the user in case of problems and ensure best e�ort operation in unanticipated environments.
These additional components are described in more detail in Chapter 4.
In the following, we �rst give a coarse grained description of the software architecture of the

parametrization component. In Section 3.2 we take a closer look at the actual parameterization
component. This description includes brief coverage of the optimization techniques employed by
the component. Section 3.2.3 highlights important aspects of its software implementation. In
Section 3.3 the supplementary rum-time component and its interface are described. Section 3.4
provides an example of how new protocol models can be added to the framework. Finally,
Section 3.5 evaluates the performance and usability of the tools.

3.1 Architecture

Figure 3.1 presents a bird's eye view of the architecture of the RELYonIT parameterization
architecture. The central component of the architecture is the actual static con�guration
framework for protocol parameterization. This component selects a suitable parameter set
to ensure the dependable performance of Internet of Things protocols. The tool receives an
XML-encoded speci�cation of the dependability requirements as input. This �le employs the
speci�cation language developed in Task 3.1. A detailed description of the syntax and seman-
tics can be found in deliverable D-3.1 [18]. In addition to a speci�cation of the application
requirements, the �le also contains the selection of protocols as determined by the algorithm
described in Chapter 2. A single requirement speci�cation may contain several requirement sets
for di�erent modes of operation. Some applications have diverse modes of operation that get
activated based on system usage and environmental conditions. These operation modes often
have very di�erent requirements in terms of network performance and reliability. For example,
a system to detect forest �res would be typically optimized for a long system lifetime during
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Figure 3.1: Architecture of the parameterization framework.

normal operation. As soon as a forest �re is detected, lifetime is not a primary concern any-
more, but we are interested in a very fast dissemination of detailed data about the current state
of the �re. To optimally support applications like this, it is necessary to allow the developer to
de�ne a set of performance states with di�erent requirements. At run-time, the application can
switch between these performance states and such select di�erent sets of active requirements
to adapt to the current situation. The selection of a performance state determines the active
con�guration for the employed protocols.
In addition to the requirements speci�cation, the con�guration tool has access to a repository

of protocol models. Based on the protocols de�ned in the requirement speci�cation, a suitable
protocol model is chosen. The individual protocol models may in turn rely on application-
speci�c instances of environment and platform models. A description of these models can be
found in the deliverable D-2.2 [28] and D-1.1 [26].
Based on these inputs a near-optimal parameter con�guration for the respective protocol is

generated by the static con�guration tool, employing mathematically optimization techniques.
If the requirement speci�cation de�nes di�erent modes of operations, the process is executed
individually for the requirements of each mode.
The �nal output of the protocol parameterization tool is a protocol con�guration for each

employed protocol. These con�gurations are static and do not change at run-time. Nevertheless,
it is possible to switch between con�gurations associated to di�erent performance modes. The
con�gurations are emitted in the form of a C source �le that can be compiled as an individual
module and can be linked with the run-time component and the actual application program. At
run-time, the information from the con�guration module is passed to the respective protocols
by the run-time environment. The run-time environment is also in charge of keeping track of
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the di�erent application performance states. When the application changes the performance
state each protocol is informed about the update and a new set of parameters is passed.

3.2 Protocol Parameterization

The static protocol parameterization component employs mathematical optimization to gener-
ate an optimal parameter con�guration for one or more Internet of Things protocols based on
a user-de�ned dependability speci�cation.
This dependability speci�cation employs the XML-based language described in deliverable

D-3.1 [18]. Each dependability speci�cation essentially de�nes a constrained optimization prob-
lem. Within the context of RELYonIT we only consider the single objective case where a single
metric is optimized, while the user may specify a number of additional constraints on the same
or other metrics. Currently, the system supports three metrics, that are derived from the use
cases studied in deliverable D-4.1 [5]: (1) system lifetime, (2) data yield, (3) and latency. This
results in optimization problems of the following form:

Maximize/Minimize m0(c)
Subject to m1(c) ≥,≤ t1with probability p1

m2(c) ≥,≤ t2with probability p2

(3.1)

The goal is to �nd a set of protocol con�guration parameters c that optimizes a single metric
m0. In addition, a variable number of constraints need to be ful�lled by ensuring that m1(c)
andm2(c) are either larger or smaller than the respective thresholds t1 and t2 with a probability
of at least p1 or p2. Note that m1 and m2 may be the same as m0.

3.2.1 Optimization Problem

To be suitable for automatic optimization, the optimization problem introduced in the previous
section needs to be transformed into suitable input for the employed optimization strategies.
Most optimization techniques cannot directly handle constraints. Instead constraints need to

be integrated in the objective function. We achieve this by normalizing the optimization goal
and all constraints to the [0, 1] range and by computing the weighted sum where constraints
are given a higher weight than the original objective. In our case, each constraint has twice
the weight as the original optimization goal. This approach corresponds to penalty functions
often used in stochastic optimization [21]. It ensures that invalid solutions are unlikely to be
selected, but still allows the optimization algorithm to traverse infeasible regions of the search
space.
In addition, the requirement speci�cation allows to attach probabilities to individual con-

straints. These constraints only need to be ful�lled with the speci�ed probability. This is
not supported by standard optimization techniques. To support this feature, we exploit the
fact that most environment parameters exhibit a periodic behavior as shown in deliverable D-
1.1 [26]. This enables us to sample the environment at di�erent points of time and identify time
frames with distinct environment conditions. Each time frame leads to a distinct environmental
model instance. If we assume communication events will be more or less evenly spread over
the di�erent environmental settings, we can assign a probability to each time frame based on
its relative length.
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Without support for di�erent probabilities, each model would provide a single cost function
fm(c) for each supported metric m. The function fm(c) returns the normalized cost of con-
�guration c. To enable the use of di�erent probabilities, each model needs to provide a set
of functions, where each of these functions fm,i(c) has an associated probability pi. Each of
these functions uses a di�erent instance of the environment model that represents a distinct
time frame. During the optimization instead of a single function fm(c), each function fm,i(c)
is evaluated for the current con�guration. In a second step, the associated probabilities pi
of all function that have as cost value that is above the threshold given in the requirement
speci�cation are summed up. For each constraint j, these and this probability is used instead
of the original function value in the optimization process.
If we assume a weight of 2 for the constraints and a problem of the form of Equation 3.1, we

end up with the following de�nition of the total �tness e for a given con�guration c:

e(c) =

(
2 ∗
∑|M |−1

j=1 ρ
(∑|P |

i=1 τopj (fmj ,i(c), pi, tj), qj

)
+ fm0(c)

)
3

(3.2)

The set M contains the metrics employed by the current speci�cation. As a convention, we
assume that the metric of the objective function is named m0 while the constraint metrics use
the indices 1 to |M | − 1. The set P contains the probability values provided by the employed
model instance. The function τ realizes the above mentioned comparison with the threshold
value t. For the operators < and > it is de�ned as follows:

τ>(v, p, t) =

{
p v > t

0 otherwise
(3.3)

τ<(v, p, t) =

{
p v < t

0 otherwise
(3.4)

The function ρ is used to determine the error between the desired probability of a constraint
and the current probability of a constraint being ful�lled. If the di�erence would be negative,
it is set to 0. Consequently, the function is de�ned as follows:

ρ(p, t) =

{
p− t p < t

0 otherwise
(3.5)

To illustrate the conversion with an example we consider the following requirement speci�-
cation:

Minimize latency(c)
Subject to yield(c) ≥ 0.94 with probability 0.95

(3.6)

The employed protocol model supports two metrics, the latency of a packet transmission and
the packet reception rate. We assume, that our model instance has data for two time intervals
with a respective probability of 0.4 and 0.6. In this example, we intend to �nd a con�guration
c that gives the smallest possible jamming period length that still supports a packet reception
rate of more than 0.94 with a probability of 0.95. Converting this speci�cation according to
the previously introduced rules, yields the following adapted �tness function:

e(c) =
(2 ∗ ρ(τ>(fyield,1(c), 0.4, 0.94) + τ>(fyield,2(c), 0.6, 0.94), 0.95) + flatency(c))

3
(3.7)
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Our goal is now to minimize the �tness function e, which leads to the following unconstrained
optimization problem:

Minimize e(c) (3.8)

3.2.2 Optimization Strategies

The protocol parameterization component can utilize a number of di�erent optimization strate-
gies to solve the optimization problem, allowing the user to choose a strategy that is most
appropriate for the speci�cation and models at hand.
The current prototype implements exhaustive search and two stochastic optimization strate-

gies. During the course of the RELYonIT project, we also explored di�erent approaches em-
ploying deterministic optimization strategies, but these proofed unsuitable for the task, as they
required a signi�cant amount of �ne tuning for each problem instance. Deterministic strate-
gies have the advantage to repeatably generate the same results if the input is left unchanged.
In addition, they are guaranteed to �nd an actual minimum or maximum, even though not
necessary a global one.
Stochastic optimization strategies are not able to give these guarantees, but are usually more

robust to noisy data and require less �ne tuning for a speci�c problem instance. Nevertheless,
suitable strategies still possess a high probability of convergence and are usually able to �nd
near-optimal solution. Due to their inherent randomness, stochastic strategies tend to be able
to escape local minima and to approach a global optimum even in a convex search space.

Exhaustive Search

Exhaustive search is actually not an optimization strategy, but instead all possible solutions
are evaluated and the best one is chosen. The search is guaranteed to �nd the best solution
according to the employed metric, but as all solutions need to be visited an exhaustive search
in not very e�cient in the general case. For more complex models it is usually not feasible
at all. We still implemented exhaustive search as an alternative as it is useful for debugging
purposes and might be more e�cient for simple models with only a limited number of valid
con�gurations.

Simulated Annealing

Simulated Annealing is a probabilistic metaheuristic that is usually more e�cient than an
exhaustive search. In contrast to exhaustive search and deterministic optimization strategies
it does not guarantee that an optimal solution will be found. Still it has a high probability of
�nding a solution that is close to an optimum and the algorithm is often also able to �nd a
global optimum in a search space with a large number of local optima.
The idea is based on annealing in metallurgy where controlled cooling is used to improve

the crystal structure in metals. The strategy emulates the reduction of energy in the material
during the cooling process. At the beginning of the process, while the temperature is high,
large changes in the material state are still possible. Later at colder stages, only increasingly
small changes are possible and the state of the material converge to a �nal con�guration.
In the following, we describe the basic algorithm of simulated annealing that is also shown

as pseudo code in Algorithm 1. The algorithm starts with a randomly initialized con�guration
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Algorithm 1 Simulated Annealing

c← randconf()
e← evaluate(c)
k ← 0
while k < kmax and e > emin do

t← temperature(k/kmax)
cnew ← neighbor(c)
enew ← evaluate(c)
if p(e, enew, t) > random() then
c← cnew
e← enew

end if

k ← k + 1
end while

return c

c whose current energy e is evaluated by an application-speci�c evaluation function evaluate.
The actual algorithm is repeated until the maximal number of iterations kmax is reached or
the energy drops under a prede�ned acceptance threshold emin. In each step, the current
temperature t is adjusted according to the temperature regime temperature. The exact regime
depends on the problem class at hand and the function temperature only needs to ensure that
the temperature is monotonically decreasing. Next, a new con�guration is generated based on
the current con�guration. This employs an often problem-speci�c neighbor function. Usually,
it should favor con�gurations that are close to the current one and only deviate slightly. The
new con�guration is then evaluated and compared with the current solution and a probabilistic
decision is made to keep either the current con�guration or replace it with the new one. This
decision is based on the function p for which we used the following de�nition:

p(e, enew, t) 7→

{
1 enew < e

exp(−(enew − e)/t) otherwise
(3.9)

In this case, new con�gurations that are superior to the current one are alway used as the
new con�guration to continue with. Inferior con�gurations have a slight chance to be chosen.
This allows the algorithm to escape from local minima. The likelihood of choosing an inferior
con�guration decreases with temperature. Finally, the process is repeated until the maximal
number of iterations is used up or the energy of the current solution drops below a prede�ned
threshold. The algorithm returns the �nal con�guration that is expected to be close to an
optimum.
In our implementation, we adopted another common optimization of the algorithm. Instead

of just storing the current con�guration, we also save the best con�guration seen so far. In the
end, the best con�guration seen is reported instead of the �nal con�guration. This way, superior
con�gurations are never lost and the likelihood of �nding an optimal solution is increased.

Copyright © 2015 RELYonIT consortium: all rights reserved page 32



RELYonIT
Dependability for the Internet of Things

Report on Protocol Selection, Parameterization, and Runtime Adaptation

Evolution Strategies

Like simulated annealing, evolution strategies are a probabilistic metaheuristic. Consequently,
they also do not guarantee that an optimal solution is found, but will usually �nd a good solution
close to the global optimum with high probability. Instead of just a single con�guration per step,
evolution strategies employ a population of con�gurations and thus are able to explore several
areas of the search space at once. As a consequence, �nding a good solution usually requires
less iterations, but each iteration is computationally more demanding. The use of a population
also makes an extension to multi-objective optimization comparatively straight forward, which
could be exploited in future versions of the tool. A distinct feature of evolution strategies is
a low number of tunable parameters. Instead evolution strategies are able to automatically
adapt to the problem at hand. A major disadvantage of evolution strategies is the signi�cantly
higher complexity that increases the implementation e�ort and the risk for errors.
Evolution strategies are loosely based on concepts imitating evolution in living species. Unlike

genetic algorithms, they do not model genes but instead employ a more abstract view on
evolution.
The algorithm starts out with a randomized population of con�gurations. At each step,

a prede�ned number of new con�gurations is generated by a cross-over between two existing
solutions. Next, a mutation operator is applied to each of the new con�gurations. The mutation
is typically performed by adding a normally distributed random value to each individual value
in the con�gurations. The properties of the distribution are stored alongside the con�guration.
These additional parameters are implicitly also subject to the optimization and are consequently
automatically adapted to the problem at hand. Finally, a subset of the new con�gurations
is semi-randomly selected. The selection is biased by the �tness of the con�guration under
the problem-speci�c metrics. Better solutions are more likely selected to be part of the next
generation. The process is repeated until a prede�ned number of iterations is reached or the
�tness of the best solution reaches a prede�ned threshold.
For our implementation we employed a slightly optimized variant of the basic strategy de-

veloped by Reehuis and Bäck [20].

3.2.3 Implementation

The actual protocol parameterization tool is implemented as a standalone Python application.
It was developed with extensibility at mind. Protocol models are integrated via a well-de�ned
plug-in interface and additional models can be easily added without a need to modify the
framework. In contrast, the integration of di�erent optimization strategies does not currently
use a plug-in interface, but the integration of newly implemented strategies is still rather straight
forward and requires only a minimal amount of local code modi�cations. In addition, the
implemented optimization strategies expose a number of con�guration parameters that allow
to adapt the strategies to di�erent needs without any change to the code.
We will now �rst give an overview of the architecture of the system and will later take a closer

look at some subsystems and interesting design decisions. Figure 3.2 illustrates the software
architecture of the parameterization tool employing UML notation. The application is build
around the central Main class which acts as controller for the parameterization process. It also
implements the user interface and takes care of a proper initialization of the other components.
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Figure 3.2: Overview of the system architecture of the protocol parameterization tool

The Main class is in charge of parsing user supplied command line parameters, reading the
requirement speci�cation and a supplemental con�guration �le and loading the model plug-ins
that are required by the requirement speci�cation at hand. After the initialization, the parsed
RequirementSpecification and the initialized Models are passed to the con�gured optimizer.
Control is passed to the Optimizer implementing one of the available optimization strategies
as introduced in Section 3.2.2. The optimization strategies employ the di�erent Models in order
to evaluate speci�c Configurations. After reaching a strategy-speci�c termination condition,
the best Configuration found is returned to the Main program. The main program passes this
Configuration to CFile which generates a C representation of the con�guration as output.
This C representation is later used by the run-time environment to actually con�gure the
communication protocols. The exact format of this representation and the design of the run-
time environment are described in more detail in Section 3.3.
Three abstractions play a central role in the implementation of parameterization framework:

the internal representation of the requirement speci�cation, the representation of protocol con-
�gurations, and the interface to protocol model plug-ins.
A requirement speci�cation detailing the expectations of the user for the performance of the

�nal application is the most important input to the parameterization process. The requirement
speci�cation document employs the format introduced in deliverable D-3.1 [18]. The require-
ment speci�cation is parsed at the start of execution and represented within the program with
a set of objects as shown in Figure 3.3. A requirement speci�cation can at most contain one
objective, which is internally represented by an Objective object. Objectives can be either
maximization or minimization goals. In the former case, the criterion attribute has the value
MAX, in the later case, it has the value MIN. The objective is associated to a speci�c Metric.
In addition to the objective, each speci�cation contains one or more constraints, each also as-
sociated to a Metric. In addition, a constraint is de�ned by a threshold value. Besides, each
constraint has a probability attribute, de�ning the probability with which the constraint
needs to be met.
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name : String
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probability : Real

0..*
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name : String
min : Real
max : Real

1 1

Figure 3.3: Internal representation of requirement speci�cations

Configuration objects represent possible parameter con�gurations during the optimization
process. Its UML representation can be seen on the lower part of Figure 3.4. The basic
Configuration interface is generic and the same for all strategies. If speci�c strategies require
further attributes or methods they may subclass Configuration as needed. In the default form,
each Configuration contains a number of values each represented by a Value object. Di�erent
subclasses of Value exist to handle di�erent value types. Each Value object is associated to
a speci�c Parameter which also de�nes the possible value range. This additional information
is also the main reason to use a custom class to represent con�guration values. The di�erent
value types enable the optimization strategies to easily handle the di�erent types individually,
if needed.
The most important abstraction to ensure the intended extensibility of the framework is the

protocol model abstraction. While the former classes are primarily used internally, the model
interface is exposed to any user implementing his own protocol models. A plug-in interface
makes it comparatively easy to add new models for di�erent protocols. A plug-in needs to
provide a class that inherits from the provided Model class and implements its interface. Most
importantly it needs to provide an implementation of the evaluate method which evaluates
the model under a set of di�erent metrics with a set of passed parameters. Before the model
can be used, its init method is called to pass model-speci�c parameters and to initialize the
model. Calls to other methods or access to properties is only valid after init has been called.
During the optimization process, the model instance is used to evaluate di�erent con�gurations.
To trigger a model evaluation, its evaluate method is called and the relevant parameter values
of the current con�guration are passed as arguments. Each model speci�es explicitly which
parameters it supports as property parameters. Four basic parameter types are supported by
the framework as can also be seen in Figure 3.4: (1) integers, (2) �oating point numbers,
(3) nominal values, and (4) Boolean values. For each type it is also possible to specify a range
of possible values. Instances of parameters have unique names that identify them within the
framework. The parameter values that are passed as arguments also employ a set of custom
value types to be able to carry additional information. Each of these values is associated with
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Figure 3.4: Model interface and parameter types
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a parameter instance. The Parameter and Value classes are identically to the ones employed
by the Configuration class. The return value of the evaluate method is a list with a �tness
value for each supported metric. Like the supported parameters, all supported metrics are
speci�ed by the property metrics. If the model supports di�erent time frames with associated
probabilities, as described in Section 3.2.1, one �tness value per metric and time frame is
returned. In this case, the plugin needs to also specify a list of supported probabilities as
property probabilities.
In the current implementation, six protocol models are available. Additional protocol models

can be easily added by the user as described in Section 3.4. The following protocol models are
available:

� energy, a model of the e�ect of duty cycle modi�cations on the energy spending of a
MAC protocol. The model can be used to �nd the best duty cycle for a speci�c radio
environment. This model relies on preprocessed data generated by a tool developed within
WP2.

� jag, a model of jamming based agreement (JAG). This model can be used to determine
the jamming period length that yields an optimal agreement probability for the JAG
protocol.

� micmac, a model of the MicMAC protocol, a multichannel MAC protocol. This model
allows to �nd parameter settings that yield a good packet reception rate and latency.

� packet_length, a generic model to �nd a packet size that results in an optimal yield
in the presence of signi�cant radio interference. This model employs preprocessed data
generated by a tool developed within WP2.

� packet_length_closed_form, a variant of the previous model, that does not rely on pre-
processed data, but uses a closed-form mathematical model.

� tempmac, a model of a MAC protocol extension that adapts the CCA threshold to miti-
gate the impact of temperature. The model allows to determine an optimal initial CCA
threshold value for a speci�c temperature model.

3.3 Run-time Interface of Protocol Parameterization

To be actually useful, the determined con�guration parameters need to be made available to the
protocols running in an actual Internet of Things application. To simplify this task, a uni�ed
con�guration interface is provided by the RELYonIT run-time environment, which enables the
individual protocol implementations to receive their con�guration parameters at initialization.
To support di�erent performance states for the application, the static optimization tool is

feed with multiple requirements speci�cations. Each speci�cation de�nes the requirements for
a speci�c performance state. The static optimization tool generates an individual parameter
con�guration for each performance state.
The output of the static optimization tool consist of a source �le containing a C representation

of the di�erent con�gurations. This �le needs to be compiled and linked with the application. A
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run-time environment provides a procedure to switch the active performance state and provides
functions to enable the protocol implementations to retrieve the current parameter settings.

3.3.1 Run-time Interface

To support this functionality, the run-time interface provides a number of functions. All of
these function use the relyonit_ pre�x. The current interface slightly di�ers from the one
originally introduced in D-3.1 [18] to improve its usability.
At run-time, the active performance state can be changed by the application through the

function

int re lyonit_set_per formance_state (char* name ) ;

which triggers a performance state change and an update of the active protocol con�gurations.
To enable the run-time environment to notify the protocols about state changes, each protocol

needs to register a call-back function at initialization. To register the call-back, the protocol
calls the function

int r e l y on i t_r eg i s t e r_pro t o c o l (
char* name ,
void (* ca l l b a ck ) ( struct r e l yon i t_pro to co l * ) )

during initialization to pass a function pointer to its callback function. In addition to the
function pointer, the protocol needs to pass its protocol name as �rst parameter. This name
needs to be identical to the one employed in the requirement description.
The callback function is later called by the run-time environment upon a state change and

the new con�guration is passed as an opaque data structure. The structure contains the active
parameter values for the new performance state. Three access function allow the protocol
implementation to retrieve the con�guration values form this opaque structure:

int relyonit_get_bool_parameter (
const struct r e l yon i t_pro to co l * protoco l ,
char* name ) ;

int re lyonit_get_int_parameter (
const struct r e l yon i t_pro to co l * protoco l ,
char* name ) ;

f loat re lyonit_get_f loat_parameter (
const struct r e l yon i t_pro to co l * protoco l ,
char* name ) ;

The parameters are selected by name. Di�erent variants enable easy handling of di�erent data
types. The data types of the C representation of the parameters correspond to the respective
data types speci�ed in the protocol model.

3.3.2 Representation of Con�gurations

The static optimization tool generates a C representation of the parameters of the di�erent
con�gurations. This representation employs the following data structures to encode the infor-
mation:
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union re lyonit_parameter_value {
int bool_value ;
int int_value ;
f loat f l oa t_va lue ;

} ;

enum re lyonit_prameter_type {
BOOL,
INT ,
FLOAT,

} ;

struct re lyonit_parameter {
char *name ;
enum relyonit_parameter_type type ;
union re lyonit_parameter_value value ;

} ;

struct r e l yon i t_pro to co l {
char *name ;
unsigned parameter_count ;
struct re lyonit_parameter *parameters ;

} ;

struct re lyoni t_per formance_state {
char *name ;
unsigned protocol_count ;
struct r e l yon i t_pro to co l * p ro t o c o l s ;

} ;

These structures are opaque to the application and are supposed to be accessed only via the
earlier introduced access functions. Like the previously introduced functions all structures
employ the relyonit_ pre�x. The pre�x and the exact names might still be subject to change
in future versions of the interface.
The relyonit_parameter structure represents an individual protocol parameter. Each pa-

rameter has a unique name, a type, and a value. The actual value of the parameter is repre-
sented by the relyonit_parameter_value union. Currently supported are Boolean, integer,
and �oat values. Booleans are represented as integers in C, but they are handled di�erently
by the optimization tool. The con�guration parameters are grouped by protocol, and one in-
stance of the relyonit_protocol structure exists for each protocol of the speci�cation. The
relyonit_protocol structure contains the name of the protocol, and an array with all param-
eters. In addition, it contains the size of the parameters array as attribute parameter_count.
The data structure performance_state groups all protocol con�gurations that are active in
a speci�c performance state. Each performance state has a unique name. In addition, this
structure contains the protocols array with a protocol con�guration and the size of this array
as attribute protocoal_count.
An instance of a complete con�guration, as generated by the static con�guration tool, could

look like the following example:
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const struct re lyoni t_per formance_state
re lyon i t_per formance_states [ ] = {

{
"example_state_1" ,
2 ,
( struct r e l yon i t_pro to co l [ ] ) {

{
"example_protocol_1" ,
2 ,
( struct re lyonit_parameter [ ] ) {

{
"para_1" ,
BOOL,
1 ,

} ,
{

"para_2" ,
INT ,
10 ,

} ,
} ,

} ,
{

"example_protocol_2" ,
1 ,
( struct re lyonit_parameter [ ] ) {

{
"para_1" ,
INT ,
200 ,

} ,
} ,

} ,
} ,

} ,
{

"example_state_2" ,
2 ,
( struct r e l yon i t_pro to co l [ ] ) {

{
"example_protocol_1" ,
2 ,
( struct re lyonit_parameter [ ] ) {

{
"para_1" ,
BOOL,
3 ,

} ,
{

"para_2" ,
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INT ,
12 ,

} ,
} ,

} ,
{

"example_protocol_2" ,
1 ,
( struct re lyonit_parameter [ ] ) {

{
"para_1" ,
INT ,
222 ,

} ,
} ,

} ,
} ,

} ,
} ;

3.4 Integration of New Protocol Models

In the following, we provide a brief tutorial of the steps required to add a new protocol model
to the framework. This section is intended to demonstrate the extensibility of the framework.
In the following we use a model of the jamming based agreement (JAG) protocol as example.

The JAG protocol is a simple yet e�cient agreement protocol for wireless sensor networks and
the Internet of Things. It introduces jamming as the last step of a packet handshake between
two nodes to make the handshake more robust against radio interference. The detection of a
jamming signal is in general more reliable than using only regular acknowledgement (ACK)
packets. This way, the protocol provides a reliable way to verify whether some information
was successfully shared and it is more likely for a pair of nodes to reach an agreement. In the
model we will treat the agreement rate as package yield as both are strongly related. The JAG
protocol has been described in detail in deliverable D-2.1 [27].
The JAG protocol model employs an existing external implementation of the model and is

consequently rather simple. In addition, the model integrates the environment model and a
platform model within the protocol model. Nevertheless, all aspects of framework integration
are the same for more sophisticated models.
The following listing shows the full code of the model. We will frequently reference to the

listing within the following text.

1 from model . model import Model
2 from model . parameter import *

3 from model . metr ic import *

4 from . import S l o t S t a t i s t i c s
5 from . import par s e r
6
7 class JagModel (Model ) :
8
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9 def __init__( s e l f ) :
10 s e l f . _inter ference_data = [ ]
11 s e l f . _pkt_tx_delay = None
12 s e l f . _ack_tx_delay = None
13 s e l f . _syn_tx_delay = None
14 s e l f . _sampling_period = None
15
16 def i n i t ( s e l f , s e t t i n g s ) :
17 try :
18 s e l f . _pkt_tx_delay = s e t t i n g s [ ' pkg tx de lay ' ]
19 except KeyError :
20 s e l f . _pkt_tx_delay = 1000
21 try :
22 s e l f . _ack_tx_delay = s e t t i n g s [ ' ack tx de lay ' ]
23 except KeyError :
24 s e l f . _ack_tx_delay = 750
25 try :
26 s e l f . _syn_tx_delay = s e t t i n g s [ ' syn tx de lay ' ]
27 except KeyError :
28 s e l f . _syn_tx_delay = 1000
29 try :
30 s e l f . _sampling_period = s e t t i n g s [ ' sampling  per iod ' ]
31 except KeyError :
32 s e l f . _sampling_period = 25
33 try :
34 da ta_f i l e = s e t t i n g s [ ' data f i l e ' ]
35 except KeyError as ke :
36 raise ke
37 s e l f . _inter ference_data = [ ]
38 # Placeho lder u n t i l d a t a s e t s wi th p r o b a b i l i t y are in p l ace

39 s e l f . _inter ference_data . append ( ( par s e r . parse ( data_f i l e , 26) , 0 . 2 ) )
40 s e l f . _inter ference_data . append ( ( par s e r . parse ( data_f i l e , 26) , 0 . 3 ) )
41 s e l f . _inter ference_data . append ( ( par s e r . parse ( data_f i l e , 26) , 0 . 5 ) )
42
43 def eva luate ( s e l f , parameters ) :
44 jam_period = parameters [ ' jamming per iod ' ]
45 r e s u l t s = [ ]
46 for ( tokens , p r obab i l i t y ) in s e l f . _inter ference_data :
47 s l o t_s ta tu s = S l o t S t a t i s t i c s ( )
48 for token in tokens :
49 s l o t_s ta tu s . u pd a t e S l o t S t a t i s t i c s ( token )
50
51 s l o t_s ta tu s . determineProbJammingSuccessful ( jam_period )
52 s l o t_s ta tu s . d e t e rm ineProbSe l e c t i ng Id l eS l o t ( )
53 pk t_probab i l i t i e s = s l o t_s ta tu s . p k tP r obab i l i t i e s (
54 s e l f . _pkt_tx_delay ,
55 s e l f . _ack_tx_delay ,
56 s e l f . _syn_tx_delay ,
57 s e l f . _sampling_period )
58 prob_disagreement = pkt_probab i l i t i e s [ 5 ]

Copyright © 2015 RELYonIT consortium: all rights reserved page 42



RELYonIT
Dependability for the Internet of Things

Report on Protocol Selection, Parameterization, and Runtime Adaptation

59
60 r e s u l t s . append (
61 ({ ' y i e l d ' : (1 − prob_disagreement ) ,
62 ' jamming per iod ' : jam_period . va lue
63 / jam_period . _parameter .max} ,
64 p r obab i l i t y ) )
65 return r e s u l t s
66
67 @property
68 def metr i c s ( s e l f ) :
69 return {Metric ( ' y i e l d ' ) , Metric ( ' jamming per iod ' )}
70
71 @property
72 def parameters ( s e l f ) :
73 return [ IntegerParameter ( ' jamming per iod ' , 0 , 2000 , s t ep_s i ze =25)]
74
75 @property
76 def p r o b a b i l i t i e s ( s e l f ) :
77 p r o b a b i l i t i e s = [ ]
78 for ( data , p r obab i l i t y ) in s e l f . _inter ference_data :
79 p r o b a b i l i t i e s . append ( p r obab i l i t y )
80 return p r o b a b i l i t i e s

In a �rst step we need to create a directory for the model. The directory needs to be within
the con�gured plug-in search path and needs to have a name that corresponds to the protocol
name with all spaces replaced by underscores. The JAG model of the example consequently
lives in a directory called �jag�. Within this directory, we need to create at least on Python
package with the same name. In our case this leads to a �le with the name �jag.py�.
Within this �le, we need to create the main class of the model implementation. A new

model needs to employ the model interface to interact with the framework. This is most easily
ensured by creating a main class that inherits form the Model class provided by the framework.
To make the class available, one needs to import all classes from the model package within
the framework implementation as done in lines 1�3. The name of the call itself needs to be
based on the protocol name, too, but in this case, all space characters are removed and each
individual word is capitalized (�camel case�) and the string �Model� is appended. In our case
this yields the class name JagModel as can be seen in line 7.
According to the interface, the class needs to implement two methods and three properties.

The latter are used to communicate a number of properties of the plug-in to the framework.
The parameters property returns all parameters that are required by the model. This refers
only to the tunable parameters that are optimized within the parameterization process. The
JAG model only uses a single tunable parameter �jamming period� that represents the selected
jamming period length. The second property metrics provides a list of metrics for which
the model generates data. The JAG model employs the standard data yield metric and a
custom metric �jamming period�. Finally, if the model supports the use of environment data
from di�erent time frames with associated probabilities, the probabilities property needs to
return all available probabilities. In our case, this is based on the actual data loaded. Protocol
models that do not use this feature would just return a list with the value 1.0 as only element.
In addition to the properties, we need to implement two methods. The init method is used
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to initialize the model. While the constructor of the object is only called at plug-in loading,
this method is called before each optimization run. It receives a single parameter that consists
of a dictionary mapping con�guration parameter names to values. Protocol models can de�ne
additional parameters that can be provided by the user as part of the system con�guration �les.
During an optimization run, these additional parameters a treated like constants and they are
not modi�ed or interpreted by the framework. Our JAG example actually uses this to receive
the location of a data �le with previously recorded interference traces. In addition, JAG uses
four optional parameters that allow to �ne-tune the model behavior. These parameters are
optional and if no value is provide, a default value is used. They are stored as attributes and
are later used within the evaluate function.
Finally, the evaluate method needs to be implement. This method implements the actual

behavior of the model. Based on the current con�guration values, which are passed as parameter
parameters in the form of a directory mapping parameter names to values, a value for all
supported metrics is calculated. If multiple time frames are supported, this needs to be done
for each time frame. In this example we just employ a single method, but typically one will
divide the implementation into a number of smaller methods that are called by evaluate. Here
we employ a single loop spanning from line 46 to 64 that repeats the evaluation for each available
time frame. Within each iteration, we �rst initialize the external model implementation and
then employ it to determine the protocol performance based on the loaded environment data,
the static model parameters, and the jamming period length value taken from the current
con�guration. Finally we convert the result to the required format, a tuple consisting of a
dictionary mapping between metric names to their calculated values and the probability of the
time frame handled in the current iteration. After evaluation of the model for all time frames,
the collected results are returned as a list.
In total the integration of an existing model only required less the 80 lines of code. This

integration e�ort does not increase for more complex models that will require a signi�cantly
larger amount of code for the actual implementation. The model implementation can bene�t
from the full range of Python language features and libraries.

3.5 Evaluation

In the following, we demonstrate the functionality of the system and evaluate the relative
performance of the di�erent optimization algorithms on the basis of a simple requirement
speci�cation. The evaluation employs the JAG protocol model introduced in Section 3.4. The
employed data traces where recorded in the TU Graz testbed. We employ three di�erent traces
with the respective probabilities P = {0.2, 0.3, 0.5}. According to the requirement speci�cation,
the employed jamming period length is minimized while keeping the expected packet reception
rate above 0.94 with a probability of one. The maximal jamming period length is set to
20 000µs. The step size of the jamming period length is set to 1µs. With the given settings,
a globally optimal solution can be found with a jamming period length of 701µs. The JAG
model yields a �tness value of 0.002336 for this solution. Please note that superior solutions
have smaller �tness values. In addition, a number of additional less desirable local minima
exists.
For the evaluation, we execute the optimization with all available optimization strategies. For
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Figure 3.5: Time/quality trade o� for di�erent optimization strategies.

each strategy, we employ di�erent numbers of iterations to evaluate the time/quality trade o�.
Due to obvious reasons, exhaustive search is only executed once with a single iteration. Each
optimization strategy is executed one hundred times for each setting to average out random
e�ects. This is especially important, as the employed stochastic optimization strategies rely
heavily on random decisions.
The results of the evaluation can be seen in Figure 3.5. The graph represents the trade o�

between the runtime of the optimization algorithms and the average quality of the solutions
found. The graph itself is based on the average over 100 runs, the error bars indicate the best
and worst value encountered during these runs. With short run times, the optimal solution is
only found in a limited number of runs and the returned solutions are often far away from the
optimal one. With longer run times, the probability increases to �nd an optimal solution as
can be seen in Figure 3.6.
As can be seen from the results, an exhaustive search requires more than 6 minutes to �nd the

optimal solution, which establishes a baseline for the other strategies. The solution returned
by an exhaustive search is always the true optimum, while with a stochastic optimization
technique, the optimal solution is only returned with a high probability at best. Usually, this
is o�set by a signi�cantly sorter run time of the optimization algorithms. The expected run
time of the di�erent strategies also depends on the problem at hand and some algorithms are
more suitable for speci�c problem classes than others.
In our example it can be seen that simulated annealing performs badly. The algorithm

requires more than 10 000 iterations to �nd suitable solutions with a su�ciently high probability.
At this point it has a run time that is only slightly lower than for an exhaustive search.
Nevertheless, if a close to optimal solution is su�cient, it would be possible to reduce the time
required by at least 50%. The quality of the results returned by simulated annealing also varies
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Figure 3.6: Probability of �nding the optimal solution within a given time.

a lot between individual runs as indicated by very long error bars.
The evolution strategies, on the other hand, performed very good in this example. Even

with only 100 iterations and the default population size of 20, this algorithm is likely able to
come up with the optimal solutions. Returned inferior solutions are also of only slightly worse
quality as can be seen from the error bars in Figure 3.5.
As the performance of the di�erent algorithms strongly depends on the properties of the

model, this result cannot be generalized. Nevertheless, the results demonstrate that the frame-
work is able to generate suitable con�gurations within reasonable time. In addition, the eval-
uation underlines the bene�t of providing di�erent optimizations strategies to chose from. For
simple models and small-sized data sets as employed here, exhaustive search can be a viable
choice. For more complex models and larger datasets, the di�erent optimizations strategies
allow to signi�cantly reduce the overhead.
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4 Runtime Adaptation

In this chapter, we present RELYonIT's approach to runtime adaptation of protocol parame-
ters. We begin by motivating why runtime adaptation is needed. Thereafter, we describe our
simulation framework to generate suitable con�gurations, and lastly present the node software
and communication protocol that manages the runtime adaptation.

4.1 Overview

The parameter optimization described in this deliverable is made under the condition that
the network is operating within the bounds of the environmental model speci�ed in Deliver-
able 1.1�Report on Environmental and Platform Models. Hence, the RELYonIT application's
performance goals can be met with high probability in normal circumstances. If the environ-
mental model is violated, however, the nodes of a RELYonIT system deployment must adapt
their protocol con�guration at runtime to attain a best-e�ort delivery of data packets. This
con�guration is run until the o�-line process of parameterization (see Chapter 3 has been re-
run, which typically involves the human operator and therefore typically takes a signi�cant
amount of time.
The runtime adaptation mode is activated directly after the runtime assurance module raises

an alarm that the environmental model is violated, as described in Deliverable 1.3�Report
on Runtime Assurance. Once runtime adaptation begins, it operates according to a speci�c
con�guration policy for the network deployment. While it is active, the runtime adaptation
module gathers data of how the network performance is at the moment, and accordingly adjusts
protocol parameters dynamically as guided by the con�guration policy.
A con�guration policy is not designed to meet user-speci�ed performance requirements. In-

stead, the con�guration policy, in conjunction with runtime adaptation, is meant as a fallback
mechanism that provides acceptable performance under a wide variety of environmental condi-
tions outside the range of the environmental model.
Con�guration policies are generated o�-line for each speci�c deployment. For this purpose,

we implement a reinforcement learning algorithm in the Cooja simulator [19], which is able to
emulate a network of nodes running exactly the same system �rmware as is running on the
real nodes in the deployment. The reinforcement learning algorithm explores a set of protocol
parameter settings, and learns which settings provide acceptable performance under various
environmental conditions.
The con�guration policy generation is not limited to run before the network deployment is

made, however. It is possible that certain conditions change over the lifetime of a network,
and the original con�guration policy may become stale as a result. Thus, we also support later
iterations of the policy generation to be made during deployment, guided by new performance
data that has been gathered from the RELYonIT application and the Contiki OS, which it runs

Copyright © 2015 RELYonIT consortium: all rights reserved page 47



RELYonIT
Dependability for the Internet of Things

Report on Protocol Selection, Parameterization, and Runtime Adaptation

on top on. The newly generated con�guration policies can then be disseminated to all network
nodes during runtime, where they are applied when the runtime adaptation mode is active.

4.2 Reinforcement Learning of Runtime Adaptation Policies

A RELYonIT application may have several modes of operation and will in these modes have
di�erent performance objectives. But regardless of the performance objectives, the application
typically has some basic communication functionality that should be provided even when the
environment model is violated.
The approach taken for adapting con�gurations is to have a simulation framework that can

simulate the set-up of a speci�c RELYonIT application. The simulation will be fed relevant
information such as the application's network topology, the �rmwares that are used, and any
collected network statistics for network connectivity.
The simulation is then run together with learning mechanisms that tune the con�guration

while running the application scenario. The learning mechanism will during the simulation
evaluate the performance given the application requirements in di�erent simulated environ-
ments.
We have decided to use an approach based on reinforcement learning [22] for the learning

mechanism. We are using it in a black box approach that allows the learning mechanism to
learn from the simulations without having any detailed knowledge about what is simulated.
The learning mechanism will simply investigate the possible options and learn what are good
con�guration actions to take. By subjecting the nodes in the simulations to conditions that
normally do not occur, the learning mechanism will �nd con�gurations that allow the network
to operate under a vast range of di�erent environmental conditions that are outside those of
the environmental model.

4.2.1 State Monitoring

State monitoring is an integral part of runtime adaptation because the state serves as the input
to the con�guration policies. Nodes monitor their internal state as represented by various
metrics collected from the operating system or from the RELYonIT application. For example,
metrics such as battery level, communication performance, power consumption, and routing
topology statistics can be included in the state monitoring.
The particular subset of the internal state that we monitor as part of the runtime adaptation

depends on what information is relevant to the requirements of the application. The selection
of metrics should be carefully tuned to achieve the best results. Including too many param-
eters increases the time required to learn con�guration policies, and it increases the energy
consumption for parameters requiring active monitoring. Including too few parameters, on the
other hand, makes it di�cult to �nd reliable con�guration policies because they might have
insu�cient information for successful learning.

4.2.2 Con�guration Policy

In its simplest form, a policy is a mapping between a state and the actions that should be
performed when the application is in this state. An action in this case can be to change a
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Figure 4.1: The illustration shows what happens when an increase of the number of neighbors
causes the system state to change (left side). This change will make the policy
perform an action that will change the send interval of the application (right side).

speci�c parameter in a protocol con�guration to a new value.
The following code written in the C programming language is a simple example of a policy

where the only state that is used is the number of neighbors for this node. It will recon�gure
the send interval when the number of neighbors change. More than two neighbors will cause a
con�guration of a longer send interval, and fewer neighbors will cause a shorter send interval.

int perform_action ( ) {
i f ( number_of_neighbors > 2) {

set_send_interva l ( 3 0 ) ;
} else {

set_send_interva l ( 1 0 ) ;
}

}

In the RELYonIT project we use a table-based model for the policies. Each state corresponds
to an entry in the table that contains the action to perform in that state. The action can
sometimes be a null action, which entails that no action will be performed when entering that
state.
Figure 4.1 shows the e�ect of performing an action that recon�gures the send interval when

the number of neighbors changes. In this case it is assumed that the policy is 9 elements large
and that in the second state there is an action that recon�gures the send interval.
In the approach we have taken all the nodes in a deployed sensor network use the same

con�guration policy, but might end up with di�erent actual con�gurations as their system
states might be di�erent from each other. One node might have just one neighbor while others
have several�this will cause the same policy to con�gure these nodes di�erently if the number
of neighbors is included in the state. This is in contrast to approaches like pTunes where all
nodes have the same system parameters [25].
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4.2.3 Learning Mechanism

We are using an approach based on reinforcement learning for the process of learning policies.
The learning is performed during simulation using a plug-in for the Cooja simulator [19]. The
speci�c learning mechanism that we use is based on �rst visit Monte Carlo learning [22]. A
utility function, which we describe below, provides the reinforcement learning with the rewards
required by the learning process. These rewards are based on the application requirements as
speci�ed by the user.

4.2.4 Utility Function

As mentioned above, the learning process is based on a utility function that speci�es the value
of being in a given state and this value is what the learning process tries to maximize.
In RELYonIT the application's dependability requirements are speci�ed as discussed in De-

liverable D-3.1 with a formulation that treats all but one performance objective as constraints.
The performance objectives are system lifetime T , data yield R, and latency L.
For example, the dependability requirements in the ventilation on demand use case (see

Deliverable D-4.1) can be formulated as:

Maximize T (c)
Subject to R(c) ≥ 75% probability 1

R(c) ≥ 90% probability 0.8
R(c) ≥ 95% probability 0.5
L(c) ≤ 5min probability 1
L(c) ≤ 1min probability 0.8

(4.1)

When applying any reinforcement learning approach to the problem at hand, one faces a
similar issue than the one described in Section 3.2.1. The reinforcement learning mechanisms
require a utility function to determine the rewards, which tends to be structurally di�erent
compared to the requirement speci�cation in Equation 4.1. In our case, the general form of
such utility function is:

utility = w1 ∗ P1 + w2 ∗ P2 + ...+ wn ∗ Pn (4.2)

Unfortunately, it is not possible to determine an analytical one-to-one mapping between the
general form of Equation 4.1 and 4.2, and the solution space will be, at least to some extent,
di�erent between the two. To address this issue, we partly apply the same approach described
in Section 3.2.1. To integrate the constraints in the objective function, we give them a higher
weight than the original optimization objective. By doing so, we penalise con�gurations where
the constraints are most likely to be violated.
However, embedding the probability appearing within the constraint speci�cations into the

utility function as described in Section 3.2.1 is also not possible here, as simulations happen by
directly running the nodes �rmware and without referring to the protocol models. We therefore
post-process the results of each simulation to check the probabilities that the original constraints
were possibly violated during a single learning iteration. If the resulting probabilities do not
match the original constraints, we further modify the weight of the corresponding performance
metric in the next iterations to steer the learning process towards better con�gurations w.r.t.
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the latter performance metric. Currently, this process occurs manually, but limited changes to
the implementation would be required to embed it within the automatic learning process.

4.2.5 Simulation Framework for O�-Line Learning

We use the Cooja simulator and its possibility to accurately emulate sensor nodes such as
Tmote Sky and Wismote. This makes it possible to reuse the �rmwares that are executed on
the real sensor network in the simulator, which will make the node behavior in simulation as
close as possible to the real-world behavior.
Cooja is typically user driven and runs one simulation and then stops. This behavior is not

suitable for reinforcement learning since reinforcement learning typically needs many repetitions
of the same scenario. We design and implement a new extension for Cooja that is able to run
multiple simulation rounds of the same scenario. This extension uses the same simulation
con�guration �les as Cooja and after the regular simulation it restarts the scenario at �xed
time intervals. Before resetting the scenario the learning process is executed.

4.3 Cooja Simulator Plugin

The learning framework in Cooja consists of a learning plugin that runs series of learning
episodes, evaluates the performance and updates the policy. The plugin and its relation to
other parts of Cooja is shown in Figure 4.2. The evaluation is performed via scripts in the
simulation �le that can be generated based on the application requirements.
The simulation �le also sets the number of episodes to simulate and the length of each

episode. The plugin calls an initialization script before starting each episode and then starts
up all the nodes after an individual random delay. The delay is to prevent all nodes from
starting at exactly the same time, something that is only possible in simulations. During the
execution of the episode all nodes use the current con�guration policy. Log messages from the
emulated nodes can be used by a log script to calculate performance metrics such as latency
for messages, parse energy consumption data, etc. When the episode is �nished an evaluation
script evaluates the performance of the application. This performance value, i.e., the utility, is
then used for updating the policy using an RL-based learning mechanism.
The simulation plugin does not have any explicit knowledge about the utility function or the

application requirements. Nor does it know what the di�erent con�guration actions will result
in. This information is partly coded in the Python scripts (the utility function) and partly in
the sensor node code (the con�guration actions).

4.3.1 Episode Execution

When Cooja loads a simulation, it sets up the network topology, loads �rmware �les into
emulated memory, and initializes all loaded emulator instances. This phase takes quite some
time, and since learning mechanisms such as reinforcement learning need many runs, it is very
important to optimize setup times. This optimization is done by keeping the same simulation
running and avoid a complete reload between the episodes. Instead, we perform a reset of each
node at the time they should start in the episode. In addition to the reset, each node that is
not active is also removed from the radio medium in Cooja to avoid unwanted disturbance.
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Figure 4.2: The RL plugin for Cooja contains the reinforcement learning implementation. It is
supported by a Jython module that executes the Python scripts in the simulation
�le. These scripts compute the utility that is used by the learning process.

4.3.2 Policy Execution

In each episode, the current policy is set into each node. This is implemented by writing to a
speci�c address that corresponds to the memory where the policy is stored in the node. The C
source code in the node is mapping its state into a state index in the policy, and uses that to
read and perform a con�guration action from the policy.
The memory area for the policy in each node is monitored using watchpoints in the MSPSim

emulator [10], which emulates the node hardware within Cooja. Each access is recorded in
order to provide this information as input to the policy update.

4.3.3 Policy Updates

The policy is updated after each episode in a manner based on the total utility achieved during
the episode. The learning process is based on �rst-visit Monte Carlo policy iteration [22]. The
learning updates a Q-table, which maps all the combinations of system state and action to
values. Each value represents an estimation of the expected utility when performing the action
in the system state. The Q-table is then transformed to a policy by picking the action (per
state) that has the highest expected utility value.
After each episode:
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Figure 4.3: Interaction between the RL plugin and the emulated node are based both on internal
state of the nodes such as the policy array and external state such as communication
and log output from the nodes.

1. Call the evaluation script to compute the total utility for the episode.

2. Go through all states visited during the episode and calculate new state-action values for
the Q-table based on the utility.

3. Update the policy based on the Q-table.

4. Use a random decay function to decide if a random action should be performed and
possibly update the policy with a random action.

5. Store the updated policy in each node by writing directly to the node's memory in prepa-
ration for next episode.

4.3.4 Generation of Environmental Parameters

In Cooja, environmental parameters that a�ect the protocol performance can be simulated as
well. We discuss this here for the example of interference generation but similar techniques can
be used also for temperature.
Cooja has a Disturber mote type that can create interference on selectable channels. We

modify this Disturber mote to generate periodical interference at a speci�c fraction of time. The
initial Disturber mote implementation generated constant interference, but this is insu�cient for
the reinforcement learning to test a large variety of scenarios in which the network must operate
well under. In the simulations where we run reinforcement learning, one or more Disturber
motes are placed at various locations in the network, so as to ensure that the reinforcement
learning tests what happens when the interference a�ects the network topology in di�erent
ways.
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Figure 4.4: Screenshot of Cooja running the RL plugin. The network topology is illustrated in
the upper left corner. The utility graph illustrating the learning progress is shown
to the right. In the bottom part of the picture are the RL-plugin control window
and the serial output from the nodes.

A simple approach to generate interference is to have a semi-periodic pattern of interference
according to a speci�c rate as proposed by Boano et al. [2]. Another approach is to generate the
interference based on the RELYonIT environmental model of a speci�c industrial deployment.
Such an interference model is usually compiled into a cumulative distribution function of time
intervals when the interference in the channel exceeds a certain threshold above the noise �oor
of the deployment.
We have chosen the �rst approach for our initial interference generator. Based on our experi-

ence, the simpler approach of semi-periodic interference is su�cient as long as the interference
rate considerably exceeds that of the environmental model. A more detailed pattern of interfer-
ence has typically been learned in environmental conditions that are within the environmental
model. Once the model is violated, however, the interference pattern may look considerably dif-
ferent. In such circumstance, another source of interference could have entered the environment,
or existing sources could have changed their interference generation pattern. Hence, generat-
ing stronger interference based on the pattern observed in normal environmental conditions is
unlikely to add value over the semi-periodic interference generation.
Our reinforcement learning is based on the assumption that the interference follows an un-

predictable pattern while the environmental model is violated. To take this assumption into
account in our simulations, we add random jitter to each time interval when the interference
generator is on and o�. This jitter also ensures that nodes do not synchronize to the interfer-
ence.
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4.4 Node Runtime

We implement runtime adaptation as a separate application running atop the Contiki operating
system in each network node. The implementation consists of two parts: 1) the runtime
adaptation process, which executes its con�guration policy once a runtime assurance alarm
has been triggered; and 2) the con�guration distribution protocol, which enables the sink to
communicate updated con�guration settings and to initiate switches between con�guration
states. In the following, we describe each of these parts of the implementation.

4.4.1 Runtime Adaptation Process

The purpose of the runtime adaption process is two-fold. First, it has a state aggregator that
combines node-local information into a single value that describes the state of the node. This
state information corresponds to the system state used in the Q-table during the reinforcement
learning phase and is the input to the con�guration policy as described in Section 4.3.3. The
node-local information includes things like network statistics and power consumption. Second,
the runtime adaption process uses this aggregated state value to adapt the node con�guration
using the pre-compiled con�guration policy if needed. In this way the runtime adaption process
allows the network to operate under harsh conditions that violate the environmental model.
We implemented the runtime adaptation process as a separate Contiki process that periodi-

cally evaluates the node-local information using the state monitoring mechanism as described
in Section 4.2.1. This is triggered through a runtime assurance alarm which is generated when
an environmental model violation is detected as described in Deliverable 1.3�Report on Run-
time Assurance. The runtime adaptation process is noti�ed via a callback when the runtime
assurance state is changed.
We retrieve network statistics via Contiki's built-in Rime statistics API. The power con-

sumption data is collected from Contiki's software-based power pro�ling tool, which provides
accurate bookkeeping of the power consumption of each system component [9]. This informa-
tion is then aggregated into one numeric state value representing the node's local state.
The runtime adaptation process uses the runtime interface of protocol parameterization de-

scribed in Section 3.3 to adapt dynamically the con�guration in the node. Unlike the constant
performance states generated during the protocol optimization phase, the runtime adaption pro-
cess adds another performance state in memory that can be adjusted during runtime. When
the runtime assurance raises an alarm, the runtime adaption process will switch to use its own
performance state. To adjust the con�guration values, the runtime adaptation process has a
list of available con�guration actions, and the con�guration policy will map the node's state to
a con�guration action as described in Section 4.2.2.
In addition to being used locally on the node during deployment, this information is used by

the learning mechanism during simulation.

4.4.2 Con�guration Distribution Protocol

Because the reinforcement learning may be executed not only before a network is deployed but
multiple times thereafter, it is necessary to provide the means for a network administrator to
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disseminate updated con�guration policies to the network nodes. To this end, we have designed
and implemented the RELYonIT Con�guration Distribution Protocol (CDP).
CDP is a broadcast-based protocol that periodically transmits the current con�guration, as

speci�ed by the sink node. CDP is built on top of the Rime communication stack [8]. It uses
Rime's implementation of the Trickle mechanism [16] to suppress redundant messages and to
increase the transmission intervals when the con�guration state has been disseminated with
high probability. Hence, the energy cost of these extra con�guration messages is negligible.
The messages consist of a 16-byte �eld that speci�es the performance state to switch to,

and a 1-byte �eld to allow the sink to signal to all nodes that an alarm is raised. For testing
purposes, they also include a set of �elds that allow a network operator to make a request to
change to a speci�c con�guration not speci�ed among the performance states in the network.

4.5 Evaluation

For the learning process, we setup a simulation for the experiment with one sink node, four
parking sensor nodes, and one interferer node in a single-hop topology. The interferer node is a
semi-periodic interferer running 33% of the time, and is placed close to the sink node. During
the reinforcement learning phase, we disabled the runtime assurance, and forced all nodes into
runtime adaptation mode to speed up the learning phase.
For the utility function, we use the weighted sum of the application message reception rate

subtracted by the energy consumption for all nodes. For the state parameters on each individual
node, we use the energy consumption and the radio idle listing time, where the latter is the time
the radio wakes up and listens without receiving any data. The state also includes a Boolean
parameter that determines whether the node is the sink or a client.
We use four actions to set the channel check rate (CCR) in the duty-cycling MAC protocol

in four di�erent classes ranging from low latency to low energy consumption. Since the runtime
adaptation allows each node to adapt its con�guration individually, the runtime adaptation
sets a �xed strobe time when enabled to allow all nodes to communicate regardless of each
node's CCR con�guration. The strobe time is set to the lowest CCR value.
In the reinforcement learning phase, we run 60 learning episodes, 15 simulated minutes each,

with an explore factor of 0.8 and a decay factor of 0.9999 to control when to do an exploration
action.
Figure 4.5 shows the progress made during the reinforcement learning phase. As more

episodes are run, the utility function exhibits an increasing trend, which entails that we come
closer to reaching our performance objective. The energy graph shows that the initial en-
ergy consumption has been reduced, without a corresponding reduction of packet delivery rate.
These results show that reinforcement learning is a promising approach to generate a con�gu-
ration that leads to acceptable performance under a large variety of challenging environmental
conditions.
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Figure 4.5: Learning a con�guration policy in a single-hop network running the RELYonIT
smart parking application. The network is disturbed by a semi-periodic interference
generator to simulate a harsh environment in which the runtime assurance would
have been triggered.
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5 Conclusions

This deliverable summarizes the results of work package WP3, speci�cally of tasks T3.2 and
T3.3. It provides a detailed description of the approaches and software artifacts for protocol
selection, parameterization, and adaptation that were developed within the project. In addition,
it depicts the development process involving these tools. With this set of tools enables it is
possible to create an environment-speci�c protocol selection and con�guration that ensure a
desired dependable performance.
Currently, the approach and tools only cover two environment factors, temperature and inter-

ference, and in our implementation they are primarily focused on the MAC layer. Nevertheless,
the basic approach is also applicable for di�erent protocol classes and could be easily extended
to further environment factors.
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