
RELYonIT
Dependability for the Internet of Things

Research by Experimentation
for Dependability on the

Internet of Things

D-4.2 � Prototype of Testbeds with

Realistic Environmental E�ects

Grant Agreement no: 317826
www.relyonit.eu

Date: October 31, 2013

Author(s) and
a�liation:

Carlo Alberto Boano (TUG), Felix Jonathan Oppermann
(TUG), Kay Römer (TUG), James Brown (ULANC), Utz Roedig
(ULANC), Chamath Keppitiyagama (SICS), and Thiemo Voigt
(SICS).

Work package/task: WP4
Document status: Final

Dissemination level: Public
Keywords: JamLab, TempLab, Testbed, Wireless Sensor Networks.

Abstract This document presents the design and implementation of two wireless sensor network
testbed extensions that enable the repeatable generation of controlled environmental conditions.
First, we present TempLab, an extension for wireless sensor network testbeds that allows to control
the on-board temperature of sensor nodes and to study the e�ects of temperature variations on the
network performance in a precise and repeatable fashion. Second, we present JamLab, a low-cost
infrastructure to augment existing sensornet testbeds with accurate interference generation while
limiting the overhead to a simple software upload. These testbed extensions play a crucial role
for the investigation of protocol performance, as they allow to rerun experiments under identical
environmental conditions.

http://www.relyonit.eu

Disclaimer

The information in this document is proprietary to the following RELYonIT consortium members:
Graz University of Technology, SICS Swedish ICT, Technische Universiteit Delft, University of Lan-
caster, Worldsensing, Acciona Infraestructuras S.A.

The information in this document is provided �as is�, and no guarantee or warranty is given that
the information is �t for any particular purpose. The user uses the information at his sole risk and
liability. The above referenced consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may result from
the use of these materials subject to any liability which is mandatory due to applicable law.

Copyright 2013 by Graz University of Technology, SICS Swedish ICT, Technische Universiteit Delft,
University of Lancaster, Worldsensing, Acciona Infraestructuras S.A.

Copyright © 2013 RELYonIT consortium: all rights reserved page 2

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Contents

1 Introduction . 8

2 TempLab: a Testbed to Study the Impact of Temperature on Wireless Sen-
sor Networks. .10

2.1 Temperature Matters . 12
2.2 Requirements . 13
2.3 Architecture . 14

Temperature Pro�les . 15
Actuators . 15
Controller . 17

2.4 Implementation . 18
2.4.1 Hardware . 18
2.4.2 Software . 18

2.5 Evaluation . 19
2.5.1 Heating and Cooling Limits . 19
2.5.2 Regeneration of Traces . 21

3 JamLab: a Testbed to Study the Impact of Radio Interference on Wireless
Sensor Networks . 25

3.1 JamLab Overview . 26
3.2 Measuring Interference Accurately Using Motes 28

3.2.1 Measuring at High Sampling Rates . 28
3.2.2 Avoiding Saturation in RSSI Readings . 29

3.3 (Re)Generating Interference . 30
3.3.1 Recording Interference Traces . 30
3.3.2 Generating Interference Patterns . 31
3.3.3 Emulation of Interference Through Models 32

WiFi Emulation . 33
Bluetooth Emulation . 34
Microwave Oven Emulation . 34

3.4 Testbed Con�guration . 35
3.4.1 Coverage and Cross-Talk . 35
3.4.2 A Theoretical Model . 36
3.4.3 Automatic Testbed Con�guration . 38

3.5 Evaluation . 40
3.5.1 Temporal Accuracy . 40
3.5.2 Impact on Packet Reception Rate . 41

4 Conclusions . 43

A Source Files . 44
A.1 Structure of the source Directory . 44
A.2 TempLab Source . 46

Copyright © 2013 RELYonIT consortium: all rights reserved page 3

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

A.3 JamLab Source . 47

Copyright © 2013 RELYonIT consortium: all rights reserved page 4

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

List of Figures

2.1 Temperature has a strong impact on link quality in outdoor deployments. Even
the normal temperature �uctuations during a day can render a good link useless. 11

2.2 Temperature pro�les over the course of a day of 16 nodes deployed in an out-
door setting (blue curves), and maximum temperature pro�le obtained with the
model-based instantiation (red dashed curve). 12

2.3 The temperature pro�le of nodes can be highly di�erent even if nodes are in
proximity of each other. This di�erence can a�ect the overall performance of the
network. 13

2.4 Model-based temperature pro�le generation. 15
2.5 Sketch of TempLab's architecture. 16
2.6 Temporarily unreadable USB serial output in the presence of sudden thermal

variations. 18
2.7 Limits in the speed of heating and cooling for LO nodes. 20
2.8 Limits in the speed of heating and cooling for PE nodes. 20
2.9 Accuracy of LO and PE nodes in replaying a real-world trace captured during

summer. 21
2.10 Accuracy of PE nodes in replaying a real-world trace captured during winter. 21
2.11 Accuracy of LO nodes when compressing the time-scale of the experiment. The

reproduced trace was taken during summer. 22
2.12 Accuracy of PE nodes when compressing the time-scale of the experiment. The

reproduced trace was taken during summer. 23
2.13 Accuracy of PE nodes when compressing the time-scale of the experiment. The

reproduced trace was taken during winter. 23

3.1 Testbed augmented with JamLab. Nodes 6, 9, and 23 are selected as Handy-
Motes, and take care of interference (re)generation in their cell. 27

3.2 Examples of wrong RSSI readings: several values are signi�cantly below the
sensitivity threshold of -100 dBm due to receiver saturation. This error is caused
by an incorrect operation of the AGC loop in presence of narrow-band signals. . 29

3.3 Encoding techniques to save memory resources. 31
3.4 Emulation of microwave oven interference (top) with �xed (middle) and random

power (bottom). 32
3.5 Empirical Models for WiFi and Bluetooth. 33
3.6 Temporal characteristics of the interference caused by microwave ovens. The

ovens emit frequencies with a periodic pattern with period T ≈ 20 ms. 35
3.7 JamLab's division in cells. 37
3.8 Regenerated interference of a microwave oven. 41
3.9 Impact of real, emulated, and regenerated interference on packet reception rate. 42

Copyright © 2013 RELYonIT consortium: all rights reserved page 5

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

List of Tables

3.1 Discrete output power levels of the CC2420 radio. 30
3.2 Scenarios. 33

Copyright © 2013 RELYonIT consortium: all rights reserved page 6

Executive Summary

To understand how the environment a�ects the performance and the operation of IoT protocols
it is fundamental to be able to rerun experiments under identical environmental conditions. This
deliverable, created in the context of Task 4.1 (Testbeds with Realistic Environmental E�ects)
of WP4 (Experimentation and Applications), presents the design and implementation of two
IoT testbed extensions that enable the repeatable playback of environmental conditions.
Within RELYonIT, we consider as primary environmental factors temperature and radio

interference, and this deliverable presents the design and implementation of:

1. TempLab: a low-cost extension for sensornet testbeds that allows to study the impact
of temperature on wireless sensor hardware and protocols;

2. JamLab: a low-cost extension for sensornet testbeds that allows the creation of realistic
and repeatable interference patterns.

These testbed extensions allow to rerun experiments under identical environmental condi-
tions and hence play a crucial role for the investigation of protocol performance. TempLab can
accurately reproduce temperature traces recorded in outdoor environments with an average
error of only 0.1◦C, and can also be used with speci�c test patterns (e.g., a series of cold and
warm periods) that vary temperature with a speci�ed frequency, allowing quick debugging of
protocol behaviour. TempLab plays an important role in examining and quantifying the e�ects
of temperature variations on sensornet applications and protocols, as it can reveal system limi-
tations that would not have been visible when experimenting with existing testbed installations.
Our preliminary experiments using TempLab have indeed revealed that high temperature can
drastically change the topology of a network and lead to network partitions, reduce signi�cantly
the performance of MAC protocols, as well as increase the processing delay in the network.
JamLab is a low-cost extension for sensornet testbeds we have developed in earlier work that

allows the creation of realistic and repeatable interference patterns. JamLab provides simple
models to emulate the interference patterns generated by several devices, and a playback capa-
bility to regenerate recorded interference patterns. As it does not require additional hardware
and the overhead is limited to a simple software upload, JamLab can be used to generate con-
trollable interference to test the performance of protocols, as successfully shown in [12], [23],
and [25]. We have extended JamLab and introduced an automatic testbed con�guration that
allows an optimal selection of the jammers within the network. Previously, the con�guration
of the testbed had to be carried out manually, a time-consuming task that did not guarantee
the creation of optimal jammer con�gurations.

Copyright © 2013 RELYonIT consortium: all rights reserved page 7

1. Introduction

The IoT and speci�cally also the FIRE research community traditionally relies on testbed
facilities to evaluate and tune newly developed methods, protocols, and applications under
realistic conditions in a cost-e�ective way. A large number of publicly available testbeds have
been developed in the last decade, where registered users can typically upload the speci�cations
of an experiment and collect traces directly via a web interface. Examples are MoteLab [49], one
of the �rst open-source wireless sensor networks testbeds to be developed (and still one of the
largest, with its 190 nodes deployed over 3 �oors), Kansei [24], (210 sensor nodes with a gateway
station attached to each of the sensor nodes) Indriya [20], (127 TelosB nodes deployed at the
National University of Singapore), TWIST [27], (200 heterogeneous nodes across several �oors
in a building in the campus of the Technical University of Berlin, Germany) and NetEye [29].
(130 TelosB mote deployed at Wayne State University, MI, USA).
The accuracy of a testbed experiment, however, largely depends on how accurately environ-

mental e�ects can be reproduced. Recent e�orts have looked at extending existing infrastruc-
tures with the emulation of environmental e�ects such as the mobility of nodes [28], [37]. In
ViMobiO [37], Puccinelli and Giordano implemented a virtual mobility overlay to reproduce
movement patterns of nodes during experimental evaluation. In the CONET testbed [17], a
swarm of �ve Pioneer 3-AT autonomous robots communicates with a static wireless sensor net-
work [2], [3]. Similarly, in Mobile Emulab [28], several robots carrying Mica2 nodes can move
in a 25m2 space.
Within RELYonIT, the primary environmental factors considered are temperature and radio

interference, which have not received signi�cant attention in the community even though they
can dramatically a�ect the performance of wireless sensor networks. Slipp et al. [41] have
developed a testbed facility to replicate the harsh RF conditions of an o�shore oil platform by
means of a VSG-based EMI generator. In the context of the CREW project [19], several testbed
facilities were augmented with state-of-the-art cognitive systems to allow research on advanced
spectrum sensing and cognitive networking strategies. However, replicating these approaches
in FIRE facilities can be very costly, as it requires expensive equipment to generate realistic
interference patterns.
Concerning temperature, instead, we are not aware of testbed infrastructures that allow

to vary the on-board temperature of wireless sensor nodes in a repeatable fashion. Industry
makes heavy use of temperature chambers during device veri�cation processes (e.g., to calibrate
sensors and transceivers [16]), but such solutions are not suitable due to their high cost and
because they target individual components and not a network of nodes, which is necessary to
disclose limitations at the communication level.
In this deliverable, we presents the design and implementation of TempLab [14] and Jam-

Lab [11], low-cost extensions for sensornet testbeds that allow to study the impact of tempera-
ture and interference on the performance of wireless sensor networks. These testbed extensions
allow to rerun experiments under identical environmental conditions and hence play a crucial

Copyright © 2013 RELYonIT consortium: all rights reserved page 8

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

role for the investigation of protocol performance in WP1 [13, 15, 51] and WP2 [12].
Chapter 2 describes the design and implementation of TempLab, an extension for wireless

sensor network testbeds that allows to control the on-board temperature of sensor nodes and
to study the e�ects of temperature variations on the network performance in a precise and
repeatable fashion. Chapter 3 describes the design and implementation of JamLab, a low-
cost �exible testbed infrastructure that allows the repeatable generation of a wide range of
interference patterns. We conclude the deliverable and draw our conclusions in Chapter 4.

Copyright © 2013 RELYonIT consortium: all rights reserved page 9

2. TempLab: a Testbed to Study the

Impact of Temperature on Wireless

Sensor Networks

Research and industrial deployments have shown that the operations of wireless sensor networks
are largely a�ected by the on-board temperature of sensor nodes. Temperature variations may
signi�cantly a�ect, among others, clock drift [39], battery capacity and discharge [34], as well
as the quality of wireless links [5].
Depending on the packaging and deployment location, the electronics of wireless sensor nodes

may experience a substantial temperature variation. Sunshine may easily heat a packaged sen-
sor node up to 70 degrees Celsius � especially if the packaging absorbs infra-red (IR) radia-
tion [10], and long term outdoor deployments have shown that the on-board temperature can
vary by as much as 35◦C in one hour and 56◦C over a day [13]. This variation is su�cient to
cause a frequency o�set of more than 100 ppm on the crystal oscillator frequency [33], which
can a�ect the rendezvous process of synchronous duty-cycled MAC protocols. Such tempera-
ture change is also enough to reduce the received signal strength between two sensor nodes by
more than 6 dB [13], which can change the packet reception rate (PRR) of the link from 100%
to 0%. Hence, a deep analysis of how temperature a�ects the operation of sensor networks is
necessary to inform the design of robust and dependable applications.
Analytical models or simulation tools that can accurately predict the impact of temperature

are hard to obtain due to the complexity of the involved physical processes. Similarly, setting
up a pilot deployment of a sensor network to evaluate the impact of temperature can be very
complex and time-consuming. On the one hand, meteorological conditions cannot be controlled,
making it impossible to ensure repeatability across several experiments. On the other hand,
temperature pro�les that can be tested are highly speci�c to the deployment location and to
the time of the year in which the experiment is carried out (i.e., to get a �avour of seasonal
temperature variations, the pilot deployment should last several months). What is needed
to overcome these limitations is an experimental facility that allows researchers and system
designers to mimic the temperature variations normally found in outdoor deployments in a fast
and simple way.
Traditional testbed facilities used to evaluate protocols and applications under realistic con-

ditions in a cost e�ective manner such as MoteLab [49], TWIST [27], Kansei [24], and Net-
Eye [29], do not allow the evaluation of temperature e�ects. To date, a low-cost �exible testbed
infrastructure that allows the repeatable generation of prede�ned temperature patterns across
a sensor network still does not exist. Industry makes heavy use of temperature chambers during
device veri�cation processes (e.g., to calibrate sensors and transceivers [16]), but such solutions
are not suitable due to their high cost and because they target individual components and not
a network of nodes, which is necessary to disclose limitations at the communication level. We

Copyright © 2013 RELYonIT consortium: all rights reserved page 10

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0

 20

 40

 60

Sep 09 Sep 10 Sep 11 Sep 12 Sep 13 Sep 14 Sep 15

T
e
m

p
e
r.

 (
°C

)

Sender
Receiver
Ambient

 0
 25
 50
 75

 100

Sep 09 Sep 10 Sep 11 Sep 12 Sep 13 Sep 14 Sep 15

P
R

R
 (

%
)

-94

-90

-86

-82

Sep 09 Sep 10 Sep 11 Sep 12 Sep 13 Sep 14 Sep 15

R
S

S
I

(d
B

m
)

Day of the Month

Figure 2.1.: Temperature has a strong impact on link quality in outdoor deployments. Even the
normal temperature �uctuations during a day can render a good link useless [48].

aim to close this gap and design tools to make a testbed capable of reproducing real-world
temperature pro�les.
Augmenting a testbed with the ability to reproduce temperature pro�les is not a trivial task.

Firstly, we need to recreate in a faithful manner the temperature variations that each node
would experience in a real-world deployment over time. Secondly, these temperature pro�les
must be applied in such a way that no other property of the setup besides temperature is altered.
Thirdly, the temperature pro�les reproduced in the testbed need to be repeatable in order to
allow a systematic quanti�cation of the impact of temperature, and should ideally emulate
daily or seasonal changes within a few hours, allowing fast prototyping and experimentation.
All these goals should be met while minimizing costs and e�orts, so to have a widely applicable
solution.
In this chapter we present TempLab, an extension for wireless sensor networks testbeds that

allows the on-board temperature of sensor nodes to be varied in a �ne-grained and repeatable
fashion. We describe testbed components, methods for implementing di�erent temperature
pro�les, and evaluate TempLab to show that it can accurately reproduce temperature dynamics
found in outdoor environments with �ne granularity.
The next section motivates the need for a testbed solution to evaluate the impact of tem-

perature on wireless sensor networks. Sect. 2.2 describes the requirements of such a testbed
infrastructure. We describe the architecture and implementation of TempLab in Sect. 2.3
and 2.4. We �nally investigate TempLab's performance in Sect. 2.5, showing that temperature
dynamics found in typical deployments can be accurately reproduced.

Copyright © 2013 RELYonIT consortium: all rights reserved page 11

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0

 20

 40

 60

 80

00:00 04:00 08:00 12:00 16:00 20:00 24:00

T
e
m

p
e
r.

 (
°C

)

Time of the Day (hh:mm)

Figure 2.2.: Temperature pro�les over the course of a day of 16 nodes deployed in an outdoor
setting (blue curves), and maximum temperature pro�le obtained with the model-
based instantiation (red dashed curve).

2.1. Temperature Matters

Temperature a�ects the operations of the most basic elements in all electric and electronic
circuits: from resistors and capacitors to clocks and transistors. Due to this impact, assessing
the e�ect of temperature on individual devices is usual practice in industry, and most electronic
devices are given an operational range. Temperature also matters at the network level, but the
e�ect of temperature on inter-device operation is far less understood.
A few studies have started to evaluate the e�ect of temperature on network operations.

Bannister et al. [5] showed that temperature has a signi�cant impact on link quality, and
Boano et al. [13] validated these claims with a more systematic study. The most powerful
case highlighting the importance of temperature at the network level is probably given by
Wennerström et al. [48], who report insights from a long-term study showcasing the impact of
meteorological conditions on the quality of 802.15.4 links. Fig. 2.1, based on traces recorded
during Wennerström's outdoor deployment, shows the on-board temperature of a transmitter
and receiver pair, and the packet reception rate of their link: even the normal temperature
�uctuations occurring during a day can transform a perfect link (100% PRR) into an almost
useless one.
However, besides these initial studies, temperature has not received (at the network level)

the same level of attention that it received at the device level, but it de�nitely should. Temper-
ature introduces a sort of dynamic heterogeneity across the network: two nodes with the same
parameters, but with di�erent on-board temperatures, will perform di�erently. It is important
to analyse this temperature-based heterogeneity, because even nodes that are physically close
can have vastly di�erent temperature pro�les.
In Wennerström's deployment [48], indeed, all the nodes are within each-other's transmission

range, and experience highly di�erent temperatures. Fig. 2.2 depicts the on-board temperature
of sixteen of these nodes over the course of a summer day [48], and Fig. 2.3 depicts the tem-
perature density function for two of them. One node is much �hotter" than the other, and this
hot node will have a shorter transmission coverage [5], [13], a larger clock drift [39], whereas

Copyright © 2013 RELYonIT consortium: all rights reserved page 12

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0
 5

 10
 15

 0 10 20 30 40 50 60 70

%

Hot Node

 0
 5

 10
 15

 0 10 20 30 40 50 60 70

%

Temperature (°C)

Cold Node

Figure 2.3.: The temperature pro�le of nodes can be highly di�erent even if nodes are in proxim-
ity of each other. This di�erence can a�ect the overall performance of the network.

the lifetime of the cold node will be much shorter [34].
How do all these temperature e�ects, and others that are yet uncovered, a�ect the operation

of network protocols?
To evaluate these e�ects, we need to provide the sensor network community with a simple,

yet accurate, low-cost testbed infrastructure enabling the study of the e�ects of temperature
variations on the network performance in a precise and repeatable fashion.

2.2. Requirements

Such a testbed solution should essentially have the ability to control the on-board temperature
of wireless sensor nodes. However, in order to accurately reproduce the temperature dynamics
that can be found in typical deployments, it is not simply enough to choose o�-the-shelf heating
and cooling elements and connect them to the testbed. The choice of the hardware, as well as
the design of the infrastructure should meet a number of requirements that we describe below.

Large temperature range Ideally, the testbed would be able to reproduce temperature pat-
terns covering the complete operating range of sensor nodes. For example, in the case of the
o�-the-shelf TelosB platform, this would imply to heat sensor nodes up to 85◦C, but also to cool
them down to −45◦C. While it is perhaps not necessary to cool all the way down to −45◦C, it
is important to reach temperatures below 0◦C to reproduce the conditions that can be found
in a real deployment during the coldest times of the year.

Fine-grained temperature control As shown in Fig. 2.2, the temperature of a node deployed
outdoors can continuously vary depending on the presence of sunshine and obstacles (e.g.,
clouds or buildings). These e�ects cause continuum gradients of temperature, i.e., the jumps of
temperature are not sudden and discrete, but smooth. Since our goal is to recreate temperature
traces in the most faithful manner, the testbed infrastructure should be able to precisely tune
the on-board temperature of a sensor node with a high resolution.

Copyright © 2013 RELYonIT consortium: all rights reserved page 13

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Fast temperature variations In a real deployment, temperature can change quickly due to
meteorological e�ects such as wind, rain, and snow, as well as due to the presence of clouds
or sunshine. In the deployment shown in Fig. 2.2, for example, a node that receives the �rst
sun-rays at the beginning of the day increases its temperature as much as 1.98◦C/minute.
An important requirement for the infrastructure that we want to build is hence the ability of
reproducing these variations as fast at they occur in the real-world. This requirement has a
strong e�ect on how accurately temperature dynamics can be reproduced.

Time scaling It is often desirable to compress the time scale of an experiment to save evalu-
ation time (as long as such time compression does not depend on the rate of the temperature
change, but only on the absolute temperature values). One may want to time-lapse the recre-
ation of real-world traces and playback, for instance, in a few hours the pro�le of a full day.
This poses stronger requirements on the ability of the testbed to quickly heat up and cool down
nodes.

Per-node temperature control As observed in Fig. 2.2, the pro�le of each node can be highly
di�erent. Hence, placing all the nodes into a single chamber would not be realistic because all
nodes would follow the same temperature pro�le. Temperature must be controlled individually
on each node.

Unaltered system behaviour The extension of the existing infrastructure should ideally not
alter the behaviour of the system in any way, as this may lead to unwanted (and unexpected)
system failures. For example, the use of metal casings should be restrained, as RF propagation
should be minimally a�ected. Similarly, the use of I/O ports of a sensor node to control heating
or cooling devices has to be avoided if this would a�ect the operations of the system.

Scalability Although it may not be necessary to augment all nodes of an existing infrastructure
with temperature control, it should be ideally possible to extend an entire testbed. Commonly
used testbeds such as MoteLab [49], TWIST [27], and NetEye [29] have typically up to 200
nodes, and our testbed solution should be able to scale at these levels.

Low cost All the above requirements have to be satis�ed while minimizing the cost of the
solution, in order to make it applicable on a large-scale.

In the next section, we present the general architecture of TempLab, our low-cost extension
of testbed facilities capable of reproducing real-world temperature pro�les with �ne granularity,
and describe the hardware and software components that we use in our implementation.

2.3. Architecture

In order to study the e�ects that temperature variations have on the operation of wireless
sensor networks and their protocols, the infrastructure needs to be able to reproduce speci�c
temperature pro�les on several nodes. This requires (i) temperature pro�les to be reproduced,
(ii) actuators to control the on-board temperature of each sensor node, and (iii) a controller
that uses the actuators to instantiate the desired pro�les.

Copyright © 2013 RELYonIT consortium: all rights reserved page 14

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Modeling sun radiation
Eq. (2)

Modeling attenuation
Eq. (3)

1 1 1 1 α α 1 1 1 α α α 1 1 1 1

Su
n

 R
ad

ia
ti

o
n

(W

/m
2
)

Su
n

 R
ad

ia
ti

o
n

(W

/m
2
)

Time of the Day Te
m

p
er

. (
°C

)

Modeling node temperature
Eq. (1)

Tnight

Smax

Time of the Day Time of the Day

Figure 2.4.: Model-based temperature pro�le generation.

Temperature Pro�les

In order to support a wide range of experimentation techniques, TempLab can generate tem-
perature pro�les using three di�erent approaches.
Firstly, one can re-play temperature traces collected in-situ at a given deployment site, such

as those in Fig. 2.2. Such trace-based temperature pro�le instantiation can accurately re�ect
the temperature variations over time with �ne granularity if long-term measurements from one
or more nodes are available. However, traces are not always at one's disposal, or they may
be incomplete: trace-based pro�les can be used only if one or more sensor nodes deployed
previously actually collected temperature data with a frequency su�ciently high to capture the
dynamics of temperature changes.
A second possibility is, therefore, to use a model-based temperature pro�le to have an estima-

tion about the temperature dynamics at a certain location without the need of traces collected
in-situ. A model-based approach uses models to estimate the temperature pro�le of objects
using basic environmental information such as the maximum solar radiation and the minimum
temperature during a day (that is readily available from satellites and meteorological stations).
The temperature model is derived from the work carried out in Task 1.1 [51] and Task 1.2 [15],
and is illustrated in Fig. 2.4.
A third possibility is to use TempLab to vary the temperature of sensor nodes using speci�c

test patterns. For example, a user may not be interested in recreating a speci�c pro�le and needs
instead only to verify whether a high temperature variation has an impact on the operation
of a given protocol. In this case, TempLab can be fed with on-o� patterns (e.g., a series of
cold and warm periods) or jig-saw patterns that vary temperature with a speci�ed frequency,
allowing a quick debugging of protocols' behaviour.

Actuators

To heat-up and cool-down the on-board temperature of sensor nodes, one or more actuators are
required for each node. Actuation can be applied out-of-band or in-band. Out-of-band means
that the sensor node is not involved in the control of its temperature, i.e., additional processing
hardware is needed. In-band methods, instead, make use of the sensor node to vary its on-board
temperature, e.g., by using its I/O pins to control heating or cooling devices. Although in-band
methods have the advantage of avoiding extra-hardware (and reduce testbed costs), they may
alter the system behaviour and violate the corresponding requirement.
Therefore, we design TempLab following an out-of-band approach based on infra-red heating

Copyright © 2013 RELYonIT consortium: all rights reserved page 15

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects
Te

m
p

er
. (

°C
)

LO

LO

LO LO

PE

Figure 2.5.: Sketch of TempLab's architecture.

lamps and cooling enclosures that allow to vary the on-board temperature of wireless sensor
nodes in the range [-5, +80] ◦C. TempLab can have two types of nodes with di�erent capabilities
as shown in Fig. 2.5: LO and PE nodes. LO nodes, which stands for lamps-only nodes,
are heating-only devices that have the capability of warming the sensor nodes between room
temperature and their maximum operating range. They are based on IR heating lamps and
they do not have any capability to cool-down the nodes below room temperature. PE nodes,
which stands for Peltier enclosure nodes, are hard temperature-isolating Polystyrene enclosures
with an embedded IR heating lamp and an air-to-air Peltier module to heat-up and cool-down
the inner temperature of the casing. To control the intensity of the IR lamps and the operations
of the Peltier module, we borrow existing home automation solutions and use wireless dimmers
to vary the intensity of the lamps and on-o� wireless switches to control the Peltier modules
embedded in the enclosure. To make sure that the temperature control system does not interfere
with the existing testbed communication, we select home automation solutions working on a
ISM frequency band that is di�erent from the one used by the sensor nodes.
This approach can easily scale to large testbeds as PE and LO nodes only need to be plugged

into wall power and require no further cabling. Furthermore, home automation solutions such
as Z-Wave allow to connect up to 256 wireless dimmers in a multi-hop fashion, and can can in
principle scale to large buildings with many devices. If a very large number of nodes need to
be supported, it is possible to partition the control network and use several controllers.

Copyright © 2013 RELYonIT consortium: all rights reserved page 16

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Controller

To instantiate a temperature pro�le and control heat lamps and Peltier modules, TempLab
uses di�erent controllers running on a centralized testbed gateway computer.

Open-loop controller The simplest one is an open-loop controller that varies the intensity
of the light bulbs in LO and PE nodes according to a pre-computed calibration function1.
This is possible if the impact of each dimming level on the on-board temperature of a node is
known based on a previous calibration. In this case, the open-loop controller can instantiate
a given pro�le without further processing. The key advantage of this approach is hence that
no sensors are needed to measure the actual temperature of the motes during the experiment.
For an accurate replay of temperature dynamics, however, the surrounding environment as
found during calibration would need to remain constant, as the controller would not account
for external factors in�uencing temperature such as open windows or sun shining in the room
hosting the testbed.

Closed-loop controller To precisely regenerate trace- or model-based temperature pro�les,
TempLab uses a closed-loop proportional-integral (PI) controller that tries to minimize the
di�erence between the desired temperature pro�le and the on-board temperature of the sensor
node of interest. The controller should hence receive a periodic feedback with frequency FU
about the on-board temperature of the sensor node in order to minimize the error with respect
to the desired temperature pro�le. The reading of the on-board node temperatures can be
carried out either out-of-band through the use of an external device or in-band using the sensor
node itself to measure the temperature and forward it to the controller. As most o�-the-shelf
wireless sensor nodes carry on-board a temperature sensor, it is very tempting to use an in-
band approach to provide up-to-date temperature measurements without adding extra-costs.
However, it has to be ensured that system behaviour is not altered. TempLab uses an in-
band approach using the USB back-channel to periodically convey temperature readings to
the controller. This task is carried out using a low-priority routine executing only when the
processor is idle.
During our experiments, we have observed that common USB serial connections used in

testbeds for data logging and node programming may be unable to cope with very fast tem-
perature �uctuations, as they result in de-synchronization of the USB sender and receiver. In
the presence of such variations, the USB serial port looses synchronization with the mote and
the characters forwarded to the USB back-channel become temporarily unreadable, as shown
in Fig. 2.6. Since standard nodes do not handle this issue autonomously, TempLab either
re-initializes the USB port or piggybacks the temperature readings onto regular data packets.
In this way, other nodes that do not su�er from this issue can report the temperature to the
controller over the USB back-channel.

1For PE nodes, one can vary the intensity of the heat lamps while the Peltier module is constantly active. As
we show in Sect. 2.5, the IR lamp can change the temperature much quicker than the Peltier module, and a
constantly active Peltier module does not slow down the heating from the IR lamp signi�cantly.

Copyright © 2013 RELYonIT consortium: all rights reserved page 17

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Figure 2.6.: Temporarily unreadable USB serial output in the presence of sudden thermal
variations.

2.4. Implementation

We now describe the hardware and software components that we used to extend our local
university testbed based on Maxfor MTM-CM5000MSP nodes (TelosB replicas).

2.4.1. Hardware

In our implementation, we use Philips E27 infra-red 100W light bulbs that can be remotely
dimmed using the Z-Wave wireless home automation standard. The latter operates on the 868
MHz ISM band, and hence does not interfere with the communications between the wireless
sensor nodes (that use the 2.4 GHz ISM band)2. To vary the intensity of the light bulbs,
we used Vesternet EVR_AD1422 Z-Wave Everspring wireless dimmers, which provide 100
dimming levels.
LO nodes are only controllable using dimmers. PE nodes have the capability of going below

room temperature thanks to enclosures made of hard Polystyrene foam embedding, in addi-
tion to the IR heating bulb, an ATA-050-24 Peltier air-to-air assembly module by Custom
Thermoelectric. The latter allows on-board temperatures of -5◦C when operated at room tem-
perature, and can be controlled through Vesternet EVR_AN1572 Z-Wave Everspring on-o�
wireless switches. The Polystyrene hard foam isolating box has a minimal impact to the radio
propagation of sensor nodes and supports temperatures up to +85◦C. The overall hardware
cost is 65e for each LO node, and 293e for a PE node.

2.4.2. Software

Actuators We control the Z-Wave network with a C++ program that uses the Open Z-Wave
stack to vary the intensity of dimmers and duty cycle the Peltier modules. Commands to the

2We have also implemented a TempLab version that uses the LightwaveRF standard operating on the 433 MHz
ISM band, in case the sensor nodes in the testbed operate on the 868 MHz ISM band. In the remainder of
the deliverable we refer to the Z-Wave implementation.

Copyright © 2013 RELYonIT consortium: all rights reserved page 18

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

control network are sent through the Aeon Labs Series 2 USB Controller deployed within the
testbed facility.

Controller Each node runs Contiki, and contains a low-priority process that periodically mea-
sures temperature using the on-board SHT11 sensor, and communicates the readings over the
USB back-channel. This can be also easily implemented in TinyOS or other operating systems,
since it needs only basic building blocks such as reading and outputting temperature. To select
the sampling frequency FU , i.e., how often should the controller receive feedback about the
on-board node temperature, we use the fastest temperature variation observed in the outdoor
deployment shown in Fig. 2.2, and compare it to the accuracy of the on-board temperature
sensors. In our case, the nodes carry SHT11 sensors that have an accuracy of 0.4◦C. According
to the pro�les shown in Fig. 2.2, such a variation can be reached within 12 seconds.
The PI controller is implemented as a standalone multi-threaded C++ application executing

on the testbed gateway that receives as input a �le with two columns: the �rst one contains
the time of the day, the second one describes the on-board temperature that the node should
have at that time. The controller is agnostic to the type of trace (whether derived empirically
or from a model): as long as the �le adheres to the two column format, it will (try to) recreate
such temperatures based on this information and the feedback signals from the motes. In case
the user chooses to time-lapse the experiment, the controller skips rows accordingly, e.g., for
a 2x speed, the controller skips every other line. We found experimentally that an optimal
con�guration of the controller is P=2 and I=0.01 to achieve fast and self-stabilizing control.
The controller allows users to manually assign the available traces to the temperature-

controlled nodes in the network. If a non-implementable mapping is created, e.g., when mapping
a trace containing negative temperatures to a LO node, the controller will signal an error.

2.5. Evaluation

In this section, we carry out an experimental evaluation of the capabilities of our TempLab
implementation. First, we investigate the performance of TempLab in terms of implementable
temperature pro�le dynamics and highlight the limitations on how fast nodes can be heated
or cooled. Thereafter, we show that temperature dynamics found in typical deployments can
be accurately reproduced despite the low-cost infrastructure, even when compressing the time
scale of an experiment to save evaluation time.

2.5.1. Heating and Cooling Limits

To verify how fast LO and PE nodes can be heated and cooled, we carry out an experiment in
which we let the closed-loop PI controller heat the nodes to 80◦C. The initial temperature is
room temperature for LO nodes and 0◦C for PE nodes, respectively. After reaching a stable
temperature, the controller cools the nodes down to their original value.

LO nodes Fig. 2.7 shows that LO nodes can heat from room temperature (26◦C) to 80◦C in
less than 5 minutes, with an average heating slope of 11.3◦C/minute. As LO nodes do not have
cooling capabilities, their cooling is rather slow: they need only 7 minutes to decrease from
80◦C to 35◦C, but they require the same time to decrease from 35◦C to 30◦C, and 20 more
minutes to get back to 26◦C.

Copyright © 2013 RELYonIT consortium: all rights reserved page 19

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0
 20
 40
 60
 80

00:00 00:08 00:16 00:24 00:32 00:40
 0

 25

 50

 75

 100

T
e
m

p
e
r.

 (
°C

)

D
im

 L
e
v
e
l
(%

)

LO Node

 0
 20
 40
 60
 80

00:00 00:08 00:16 00:24 00:32 00:40
 0

 25

 50

 75

 100

T
e
m

p
e
r.

 (
°C

)

D
im

 L
e
v
e
l
(%

)

Time [hh:mm]

Target Temper.
Actual Temper.
Dimming Level

Figure 2.7.: Limits in the speed of heating and cooling for LO nodes.

 0
 20
 40
 60
 80

00:00 00:08 00:16 00:24 00:32 00:40
 0

 25

 50

 75

 100

T
e
m

p
e
r.

 (
°C

)

D
im

 L
e
v
e
l
(%

)

PE Node

 0
 20
 40
 60
 80

00:00 00:08 00:16 00:24 00:32 00:40
 0

 25

 50

 75

 100

T
e
m

p
e
r.

 (
°C

)

D
im

 L
e
v
e
l
(%

)

Time [hh:mm]

Target Temper.
Actual Temper.
Dimming Level

Figure 2.8.: Limits in the speed of heating and cooling for PE nodes.

PE nodes Fig. 2.8 shows that PE nodes can heat from 0◦C to 80◦C in less than 9 minutes,
with an average heating slope of 9.3◦C/minute. PE nodes are obviously much more e�cient
in cooling than LO nodes: they need only 6 minutes to decrease from 80◦C to 35◦C, and 10
minutes to decrease to ambient temperature (26◦C). Overall, they can vary the temperature
from 80◦C to 0◦C in less than 35 minutes.

Copyright © 2013 RELYonIT consortium: all rights reserved page 20

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 30

 40

 50

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
 0

 1

 2

Te
m

p
er

.
(°

C
)

E
rr

or

(°

C
)(Speed: 1x, LO Node)Original Temper.

Replayed Temper.
Error (Avg. 0.18°C)

 30

 40

 50

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
 0

 1

 2

Te
m

p
er

.
(°

C
)

E
rr

or

(°

C
)

Time [hh:mm]

(Speed: 1x, PE Node)Original Temper.
Replayed Temper.

Error (Avg. 0.12°C)

Figure 2.9.: Accuracy of LO and PE nodes in replaying a real-world trace captured during
summer.

 0

 20

 40

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00
 0

 1

 2

 3

 4

Te
m

p
er

.
(°

C
)

E
rr

or

(°

C
)(Speed: 3x, PE Node)

Time [hh:mm]

Original Temper.
Replayed Temper.

Error (Avg. 0.14°C)

Figure 2.10.: Accuracy of PE nodes in replaying a real-world trace captured during winter.

2.5.2. Regeneration of Traces

We now evaluate TempLab's ability of reproducing a given temperature pro�le. We compute the
accuracy of TempLab by computing how close the instantiated temperature pro�le PI follows
the given pro�le to be reproduced PG. The overall accuracy Qn of the reproduced temperature
pro�le at node n can be expressed as:

Qn =
1

T

∫ T

0
|PI(t)− P(t)| dt (2.1)

where T is the duration of the experiment. Besides the requirement to follow a temperature
pro�le over time, it is also important to ensure that the rate of temperature changes is re�ected
accurately. At no point in time the instantiated temperature curve at a node n should deviate
too much from the given temperature pro�le. The maximum deviation qn can be expressed as:

qn = max
t
|PI(t)− P (t)| (2.2)

The smaller the value of Qn, the better the instantiation of the temperature pro�le, whereas
the smaller qn, the better the dynamics of the temperature change are re�ected.
We take as a reference for our evaluation two temperature traces collected in an outdoor

deployment in Sweden [48]: one taken during summer (August), and a �colder" one taken in
the end of October, when temperature approaches 0◦C.

Summer trace Fig. 2.9 shows that both LO and PE nodes can instantiate the desired tem-
perature pro�le on the sensor nodes with very high accuracy. The average error Qn equals

Copyright © 2013 RELYonIT consortium: all rights reserved page 21

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 30

 40

 50

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
 0

 1

 2

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 1x)

LO Node
Original Temper.

Replayed Temper.
Error (Avg. 0.18°C)

 30

 40

 50

 60

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:20
 0

 1

 2

 3

 4

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 3x)

LO Node
Original Temper.

Replayed Temper.
Error (Avg. 0.52°C)

 30

 40

 50

 60

00:00 00:30 01:00 01:30 02:00
 0

 2

 4

 6

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 5x)

LO Node
Original Temper.

Replayed Temper.
Error (Avg. 1.12°C)

 30

 40

 50

 60

00:00 00:30 01:00
 0

 3

 6

 9

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 10x)

LO Node

Time [hh:mm]

Original Temper.
Replayed Temper.

Error (Avg. 1.90°C)

Figure 2.11.: Accuracy of LO nodes when compressing the time-scale of the experiment. The
reproduced trace was taken during summer.

0.18◦C and 0.12◦C, whereas qn is 1.90◦C and 1.43◦C for LO and PE nodes, respectively. This
is a remarkable accuracy, and shows that despite the use of low-cost components (LO nodes),
TempLab can still reproduce with high accuracy real-world temperature pro�les above room
temperature.

Winter trace During winter time, the sun can quickly raise the temperature in the package
hosting the sensor nodes. We replay a trace captured during October 2012 [48], in which the
on-board temperature of a node has a signi�cant variation from 45◦C during daytime to 0◦C in
the evening, and see how accurately PE nodes can instantiate this temperature pro�le on sensor
nodes. Fig. 2.10 shows the results: the average error Qn equals 0.14◦C, whereas qn = 3.36◦C.

Accuracy of time-lapsed traces The accuracy of the replay shown in Fig. 2.10 is even more
remarkable if we consider that we have compressed the original 24-hour trace into 8 hours
playback time, i.e., we used a compression factor of 3. We now show the accuracy of LO and
PE nodes in the regeneration of traces in which the time has been compressed even further.
Summer trace. Fig. 2.11 shows the accuracy of the regeneration of a summer trace using LO
nodes: when instantiating the same trace used in Fig. 2.9, LO nodes show evident limits due to
the lack of cooling capabilities. Compared to the error of 0.18◦C when regenerating at normal
speed, the average error Qn raises to 1.12◦C when the time is compressed by a factor of 5,
whereas Qn is 0.52◦C and 1.90◦C when replaying a trace compressed with factor 3 and 10,

Copyright © 2013 RELYonIT consortium: all rights reserved page 22

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 30

 40

 50

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
 0

 1

 2

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 1x)

PE Node
Original Temper.

Replayed Temper.
Error (Avg. 0.12°C)

 30

 40

 50

 60

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:20
 0

 1

 2

 3

 4

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 3x)

PE Node
Original Temper.

Replayed Temper.
Error (Avg. 0.41°C)

 30

 40

 50

 60

00:00 00:30 01:00 01:30 02:00
 0

 1

 2

 3

 4

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 5x)

PE Node
Original Temper.

Replayed Temper.
Error (Avg. 0.55°C)

 30

 40

 50

 60

00:00 00:15 00:30 00:45 01:00
 0
 2
 4
 6
 8

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)

Time [hh:mm]

(Speed: 10x)
PE Node

Original Temper.
Replayed Temper.

Avg. Error (1.23°C)

Figure 2.12.: Accuracy of PE nodes when compressing the time-scale of the experiment. The
reproduced trace was taken during summer.

 0

 20

 40

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00
 0

 2

 4

 6

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 3x, PE Node)Original Temper.

Replayed Temper.
Error (Avg. 0.14°C)

 0

 20

 40

 60

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30
 0

 2

 4

 6

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 5x, PE Node)Original Temper.

Replayed Temper.
Error (Avg. 0.24°C)

 0

 20

 40

 60

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15
 0

 2

 4

 6

Te
m

pe
r.

 (
°C

)

Er
ro

r
 (

°C
)(Speed: 10x, PE Node)

Time [hh:mm]

Original Temper.
Replayed Temper.

Error (Avg. 0.80°C)

Figure 2.13.: Accuracy of PE nodes when compressing the time-scale of the experiment. The
reproduced trace was taken during winter.

Copyright © 2013 RELYonIT consortium: all rights reserved page 23

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

respectively. PE nodes, instead, can replay the summer trace with higher accuracy: a trace
3 times faster than the original speed is replayed with an error of Qn = 0.41◦C, which cor-
responds to an error reduction of 25% compared to the LO nodes, as shown in Fig. 2.12. A
clear advantage of PE nodes is shown when replaying a trace 5 times faster than the original
speed. In this case Qn = 0.55◦C and the error is hence halved compared to the LO nodes
(qn = 3.84◦C). When compressing time by a factor of 10, however, we can start to observe that
the Peltier modules reach their limit, and cannot properly cool down in only 4 minutes what
in reality takes 45 minutes. Nevertheless, Qn is only 1.23◦C, and qn = 5.57◦C.

Winter trace. Fig. 2.13 shows the accuracy of the regeneration of a winter trace using PE
nodes. The average error is Qn = 0.14◦C and Qn = 0.24◦C when replaying the trace 3 and 5
times faster than the original speed, respectively. Also in this case, when compressing time by
a factor of 10, we start to observe that the Peltier modules cannot cope with quick temperature
variations, as they cannot properly cool down in only 15 minutes what in reality takes more
than 2 hours. Although Qn is only 0.80◦C, the maximum deviation qn can be as high as 5.41◦C.

Copyright © 2013 RELYonIT consortium: all rights reserved page 24

3. JamLab: a Testbed to Study the Impact

of Radio Interference on Wireless Sensor

Networks

The reliability and robustness of sensornet communications are strongly a�ected by radio inter-
ference. As an increasing number of standardized communication technologies operate in ISM
bands, the congestion in the radio spectrum is in�ating, and the quality of communications de-
creases. In safety-critical sensornet applications such as industrial automation and health care,
in which the reliability and stability of communications are vital, radio interference represents
a major challenge, as it leads to packet loss, high latencies, and reduced energy-e�ciency due
to retransmissions. This issue is especially serious in the 2.4 GHz ISM band, as wireless sensor
networks that operate at such frequencies must compete with the ongoing communications of
WLAN, Bluetooth, and other IEEE 802.15.4 devices. Furthermore, sensornet communications
in these frequencies can also be a�ected by several domestic appliances that are source of elec-
tromagnetic noise, such as microwave ovens, video-capture devices or baby monitors. This high
number of di�erent wireless devices sharing the same frequencies and space raises the need
for coexistence and interference mitigation techniques in 802.15.4-based sensor networks, as
highlighted by previous studies [35, 40].
In particular, there is a strong need for understanding the performance of existing sensornet

protocols under interference, as well as designing novel protocols that can deliver high and
stable performance despite changing interference patterns. This, however, requires a proper
testbed infrastructure where realistic interference patterns can be easily created in a precise and
repeatable way. Unfortunately, existing sensornet testbeds lack such capabilities for interference
generation, or they are limited to static WiFi access points randomly placed in the testbed [29],
which does not enable the creation of a wide range of interference patterns in a repeatable way.
Furthermore, the use of expensive equipment such as VSG-based EMI generators to generate
realistic interference patterns as done in [41] is also not optimal. Upgrading existing testbeds
with additional heterogeneous devices in order to introduce interference sources is a costly,
in�exible, labor-intensive, and placement-dependent operation.
We therefore propose to augment existing sensornet testbeds with JamLab, a low-cost infras-

tructure for the creation of realistic and repeatable interference patterns. Such an infrastructure
supports the recording and playback of interference traces in sensornet testbeds, as well as the
customizable generation of typical interference patterns resulting from WiFi, Bluetooth, mi-
crowave ovens, or any other device operating in the frequency of interest.
The next section describes the general architecture of JamLab. We then detail how to use

common sensor motes to accurately measure interference (Sect. 3.2) and accurately replay it
(Sect. 3.3). We then discuss how to con�gure the testbed in Sect. 3.4 and evaluate JamLab's
accuracy in Sect. 3.5.

Copyright © 2013 RELYonIT consortium: all rights reserved page 25

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

3.1. JamLab Overview

JamLab is a low-cost extension for existing wireless sensor network testbeds that provides a
way to generate realistic and repeatable interference patterns. The key idea behind JamLab is
to use o�-the-shelf motes to record and playback interference patterns instead of bringing WiFi
access points, microwave ovens, or other equipment to the testbed. The latter approach is not
only costly and hard to reproduce exactly by other researchers, but it is even di�cult to exactly
reproduce a given interference pattern with the same appliance. For example, the sequence and
timing of the WiFi frames generated by a �le download may di�er between repeated trials due
to TCP adaptation mechanisms (e.g., timeouts, window sizes). Furthermore, every device used
to generate interference in the testbed needs to be programmed remotely. Programming several
heterogeneous devices such as WiFi access points or microwave ovens would create a signi�cant
overhead, whereas using JamLab the installation overhead is minimal.
Indeed, with JamLab, either a fraction of the existing nodes in a testbed are used to record

and playback interference patterns, or a few additional motes are placed in the testbed area.
We call those motes used for interference generation HandyMotes. The HandyMotes support
two modes of operation: emulation, where a simpli�ed model is used to generate interference
patterns that resemble those generated by a speci�c appliance (such as a WiFi device or a
microwave oven); and regeneration, where each HandyMote autonomously samples the actual
interference, compresses and stores it locally, and regenerates the recorded patterns later. The
latter mode is especially useful to record realistic interference patterns in a crowded shopping
center or on a lively street by placing a few HandyMotes to record interference, and bringing
them to the testbed to playback the recorded traces there.
One fundamental challenge results from the fact that the maximum RF output power of motes

(0 dBm) is typically much smaller than the RF output of other typical interference sources (25
and 60 dBm for WiFi and microwave ovens, respectively). Therefore, a WiFi transmitter or
a microwave oven may disturb sensornet communications over much larger distances than a
HandyMote can. We address this issue by subdividing the testbed area into cells as depicted in
Fig. 3.1, such that a HandyMote placed at the center of the cell can interfere with all testbed
motes contained in the cell, but the interference with motes outsides of the cell is minimized.
This requires a careful placement or selection of HandyMotes and control of their RF output
power. We investigate this issue and propose a procedure for HandyMote placement and
power control in Sect. 3.4. Note that there is a trade-o� between the realism of the generated
interference patterns and the number of HandyMotes: the more cells, the more accurate is the
spatial distribution of interference, but the more HandyMotes are required.
Another challenge is that many interference sources emit wideband signals, i.e., they interfere

with many 802.15.4 communication channels at the same time. In contrast, a mote can only
transmit on a single channel at a time. Fortunately, most existing sensornet protocols use
only a single channel. However, there is a trend to use multiple 802.15.4 channels at di�erent
nodes to increase robustness and bandwidth. Our approach to deal with this issue is to place
multiple HandyMotes in each cell, each one interfering on one 802.15.4 channel. The use of
Software De�ned Radio (SDR) techniques using USRP devices would provide more accurate
jamming signals on a wider bandwidth, but their high cost represents a sizeable limitation.
To synchronize the generation of interference patterns within the HandyMotes in one cell and
across cells, we need time synchronization, and we propose to use the testbed infrastructure

Copyright © 2013 RELYonIT consortium: all rights reserved page 26

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

Figure 3.1.: Testbed augmented with JamLab. Nodes 6, 9, and 23 are selected as HandyMotes,
and take care of interference (re)generation in their cell.

(i.e., wired back-channels) to send synchronization signals to the HandyMotes.
Due to the constrained resources of a mote, also the accurate recording and playback of in-

terference represent a challenge. To capture short interference patterns such as those generated
by WiFi beacons, we need high sampling rates with low jitter, which requires data compression
due to the limited amount of available memory. Our solutions to these problems are described
in Sect. 3.3.1. The accurate measurement of the interfering signal strength turned out to be a
challenge in itself due to the gain control in the radio, as detailed in Sect. 3.2.
For the playback of recorded interference traces, normal packet transmissions are not appro-

priate, as this would o�er only limited control over the exact timing of the transmitted signals.
Therefore, we use special test modes of 802.15.4 radios to generate modulated or unmodulated
carrier signals as detailed in Sect. 3.3.2.
JamLab has been designed speci�cally for the Texas Instruments CC2420 radio [44], and

tested on several sensor motes such as Maxfor MTM-CM5000MSP, Crossbow TelosB, and
Sentilla JCreate, but the framework can be applied to any sensornet platform. Based on the
analysis of the datasheets, the Handymotes should be easily ported to similar radios such as
the Ember EM2420 transceiver, and to newer radios such as the CC2520. We develop the

Copyright © 2013 RELYonIT consortium: all rights reserved page 27

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

HandyMotes based on Contiki, a lightweight and �exible operating system for tiny networked
sensors [22].

3.2. Measuring Interference Accurately Using Motes

Measuring interference accurately on a mote is a key functionality, both for recording and later
playback of interference, as well as for acquiring a deep understanding of common interference
sources such as WiFi or Bluetooth. We describe in this section the techniques we used in order
to let a common sensor mote measure the interference accurately at a su�ciently high sampling
rate.

3.2.1. Measuring at High Sampling Rates

Link quality indicators such as RSSI [42] and LQI [9] provide an indication of the signal strength
and quality, but only upon the reception of a packet [4]. The only feasible way to quantify
the amount interference is hence the continuous measurement of the RSSI noise �oor, i.e., the
RSSI in absence of packet transmissions.
We improve existing Contiki tools [18] and develop an application that scans a single pre-

de�ned IEEE 802.15.4 channel at its middle frequency with a very high sampling rate, and
returns the RSSI noise �oor readings over time.
A �rst requirement for this scanner is to achieve a high sampling rate, given that we need

to detect short transmissions periods. After boosting the CPU speed, optimizing the SPI
operations, as well as bu�ering and compressing the RSSI noise �oor readings using Run-
Length Encoding (RLE), we reached a maximum sampling rate of approximately 60.5 kHz
when sampling a single channel. This sampling rate is not su�cient high to capture all WiFi
transmissions, as the maximum speed of 802.11b/g/n standards is 11, 54, and 150 Mbit/s,
respectively. The minimum size of a WiFi packet is 38 bytes (ACK and CTS frames), which
would make a resolution of 60 kHz su�cient to detect all 802.11b frames, but not all 802.11g/n
frames. However, as most WiFi frames are data frames and typically contain higher layer
headers, one can sample at 60 kHz frames with TCP/IP headers having a payload size higher
than 27 and 227 bytes for 802.11g/n, respectively.
Another requirement is to accurately measure the strength of the ongoing interference in the

radio spectrum by means of precise RSSI noise �oor readings. The CC2420 radio speci�es an
accuracy of ±6 dBm, and a linearity of ±3 dB in the dynamic range [−100, 0] dBm. Such
accuracy and linearity has so far been acknowledged by the research community as enough to
carry out operations such as Clear Channel Assessment (CCA) and low-power channel sampling
for activity recognition [36].
However, our experiments show that the RSSI noise �oor readings captured at high sampling

rate su�er of a systematic problem in three speci�c scenarios, namely: (i) when a narrow
unmodulated carrier is transmitted, (ii) when microwave ovens are switched on, and (iii) in the
presence of Bluetooth transmissions. In these scenarios, the CC2420 radio often returns RSSI
values that are signi�cantly below the supported range and the sensitivity threshold, e.g., -110
or -115 dBm. Fig. 3.2 reports examples of such wrong readings, which represent an important
problem, since they also impact the correct functioning of CCA in the presence of narrow-band
signals, as shown in Fig. 3.2(c). Our investigation also shows that the same problems applies

Copyright © 2013 RELYonIT consortium: all rights reserved page 28

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

-120

-100

-80

-60

-40

 0 10 20 30 40 50

N
o
is

e
 [
d
B

m
]

Time [ms]

Wrong RSSI Readings

(a) Active Microwave Oven

-120

-100

-80

-60

-40

 0 15 30 45

N
o

is
e

 [
d

B
m

]

Time [ms]

Wrong RSSI Readings

(b) Bluetooth Transmission

-115

-100

-85

-70

-55

 2400 2420 2440 2460 2480

N
o
is

e
 [
d
B

m
]

Frequency [MHz]

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
IEEE 802.15.4 CHANNELS

(c) Unmodulated Carrier

Figure 3.2.: Examples of wrong RSSI readings: several values are signi�cantly below the sensi-
tivity threshold of -100 dBm due to receiver saturation. This error is caused by an
incorrect operation of the AGC loop in presence of narrow-band signals.

to other sensornet platforms employing similar versions of the chip, such as the Ember EM2420
transceiver. We experimentally identi�ed that the problem is due to the saturation of the
Intermediate Frequency (IF) ampli�er chain: we have observed that maximum gain is used in
the Variable Gain Ampli�er (VGA) when the incorrect RSSI readings occur.

3.2.2. Avoiding Saturation in RSSI Readings

The reason of this saturation problem can be found in the radio demodulation chain. The
CC2420 chip implements part of the IF �ltering in analog domain and further �ltering is later
performed in digital domain. It employs an Automatic Gain Control (AGC) loop to maintain
the signal amplitude close to a certain target value that guarantees the correct operation of
the Analog-to-Digital Converter (ADC). More speci�cally, the signal is maintained within the
ADC dynamic range, despite large variations in the input signal from the antenna. For this
purpose, the AGC loop uses a digital sample of the �nal IF signal amplitude and adjusts the
gain of the VGA stage accordingly.
If a narrowband signal is present near the cut-o� frequency of the combined IF chain, the

resulting sampled signal amplitude may be remarkably lower than the partially un�ltered one
at the ADC, as a consequence of the digital �ltering. Since the AGC uses the �nal value to set
the gain of the ampli�er chain, there is no guarantee that the ADC is not saturating. In the
event of ADC saturation, the receiver is no longer linear and the RSSI values are incorrect.
To linearise the radio response for an arbitrary noise signal and hence avoid wrong RSSI

readings, we activate the peak detectors in-between the ampli�er stages so that their output
is used by the AGC algorithm to compute the required gain. The latter is attained with VGA
stages and the system switches in and out �xed gain stages as needed. In the CC2420, the peak
detectors are controlled by the AGCTST1 register, and can be con�gured as follows:

unsigned temp;

CC2420_READ_REG(CC2420_AGCTST1, temp);

CC2420_WRITE_REG(CC2420_AGCTST1,

(temp + (1 << 8) + (1 << 13)));

Copyright © 2013 RELYonIT consortium: all rights reserved page 29

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

The register also includes �ag bits to activate peak detectors among �xed gain stages in the
IF chain and at the ADC itself [44].

3.3. (Re)Generating Interference

With the techniques to accurately measure interference introduced in the previous section, we
can now proceed to record and replay those patterns. We describe �rst how to compress and
store traces on motes and then how to playback those recordings.

3.3.1. Recording Interference Traces

When used in regeneration mode, HandyMote records interference traces that are later played
back accordingly. Those traces can be either stored on the mote in RAM or Flash memory, or
� if the HandyMote is connected to a testbed during recording � can be streamed over a wired
backchannel to a base station. In any case, the data rate of 480 kbps generated by sampling
RSSI with a resolution of 8 bits to hold values between 0 and -100 dBm at 60 kHz is too
high to store it directly in memory or to stream it over the back-channel. The very e�cient
Co�ee Flash �le system supports a peak write bandwidth of only 376 kbps [45], the MSP430
UART supports a maximum data rate of 460 kbps for writing to the USB back-channel, and
the limited 4 kB RAM of the MSP430 could just record a trace of less than 70 milliseconds
duration.
While we need a high compression ratio, the compression method has to be e�cient enough

to allow sampling of RSSI at 60 kHz. Therefore, we use a simple Run-Length Encoding strategy
and a quantization of the samples to a few bits per sample. We store a stream of pairs (v, o),
where v is a sample and o is the number of consecutive occurrences of this sample. This method
is very e�ective, as RSSI values typically change slowly over time.
The quantization is justi�ed by the fact that the CC2420 only supports 11 distinct output

power levels in the range [-55,0] dBm by setting the PA_POWER register to the values we
derived and listed in Table 3.3.1. To obtain the highest possible output resolution, four bits
per sample with an appropriate non-linear quantization are hence su�cient. For example, for
two-bit resolution one can use thresholds -55, -70, and -80 dBm (or register values 31, 7, and 3)
with a spacing of 15 and 10 dBm, respectively, for quantizing the RSSI range into four regions.

PA_POW. dBm PA_POW. dBm PA_POW. dBm
31 0 15 -7 2 -45
27 -1 11 -10 1 -50
23 -3 7 -15 0 -55
19 -5 3 -25 - -

Table 3.1.: Discrete output power levels of the CC2420 radio.

Fig. 3.3(b) shows how original RSSI readings (top) are mapped into 2 bits (bottom): the two-
bit quantization of a 35 ms interference recording reduces the amount of data from 2076 Bytes
to 84 bytes � a compression ratio of 1

25 . A single bit per sample is enough to support binary

Copyright © 2013 RELYonIT consortium: all rights reserved page 30

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 -100

-60

-20

N
o

is
e

 [
d

B
m

]

Real Interference CCA threshold

0

1

 0 10 20 30

B
it
 M

a
p

p
in

g

Time [ms]

Current state

(a) 1-bit precision

 -100

-60

-20

N
o

is
e

 [
d

B
m

]

Real Interference Thresholds

0

1

2

3

 0 10 20 30

B
it
 M

a
p

p
in

g

Time [ms]

Current state

(b) 2-bit precision

Figure 3.3.: Encoding techniques to save memory resources.

interference regeneration. This corresponds to the outcome of a continuous CCA operation, in
which the outcome busy/idle channel is mapped to a binary number [47].
Fig. 3.3(a) shows the outcome of a one-bit quantization of 35 ms of interference. The amount

of data is reduced from 2076 Bytes to 20 Bytes � a compression ratio of less than 1
100 . This

reduces the raw data rate of 480 kbps to less than 5 kbps (depending of course on the values of
the raw samples), a data rate that can be handled by Flash and USB, and allowing us to store
several seconds of recording in RAM. In our current implementation, we store traces in RAM.
Recording interference traces is energy demanding, as both CPU and radio need to be con-

stantly active while scanning the radio medium. Using software-based on-line energy estima-
tion [21], we obtain an average power consumption of 65.4 mW for Tmote Sky motes, which
allows for a lifetime up to 4 days when powered using primary AA batteries.

3.3.2. Generating Interference Patterns

Recent works have shown that the CC2420 test modes can be used to generate controllable and
repeatable interference [7, 8] by transmitting a modulated or unmodulated carrier signal that
is stable over time. This approach is superior to common jamming techniques based on packet
transmissions, as the emitted carrier signal is independent from packet sizes and inter-packet
times.
In order to generate an interference pattern, the interferer has to be enabled and disabled

and its output power has to be set according to the compressed recorded trace in regeneration
mode or according to the output of models in emulation mode. When enabling the transmitter
using the STXON command, the radio oscillator �rst has to stabilize before a transmission
is possible, resulting in a latency of 192µs or a maximum playback frequency of only 5 kHz.
Therefore, we leave the transmitter on and just change the output power level to 0 (or -55 dBm)
instead of disabling the transmitter. At level 0 the RF output power is so small that even a
receiver at a distance of only few centimetres can hardly notice the signal. The advantage of
this approach is that the latency for changing the output power is dominated by the SPI access
time. We optimized the SPI driver in Contiki, resulting in a latency of only few microseconds �

Copyright © 2013 RELYonIT consortium: all rights reserved page 31

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

-100

-75

-50

N
o

is
e
 [

d
B

m
]

Example of Real Interference

-100

-75

-50

N
o

is
e

 [
d

B
m

]

Emulated Interference (Fixed Power)

-100

-75

-50

 0 10 20 30 40 50 60 70

N
o

is
e

 [
d
B

m
]

Time [ms]

Emulated Interference (Random Power)

Figure 3.4.: Emulation of microwave oven interference (top) with �xed (middle) and random
power (bottom).

allowing us to to playback at the same frequency of 60 kHz that was also used during recording.
Besides the sampling and playback rate, also the jitter during playback of the individual

samples needs to be minimized in order to ensure an accurate reconstruction. At 60 kHz,
the playback time between two consecutive samples is just 17µs, hence the duration of the
execution of a sequence of micro-controller instructions is no longer negligible. In particular,
di�erent execution paths in the program to uncompress samples in regeneration mode lead to
di�erent execution times and jitter. Therefore, we add NOP instructions to make all execution
paths equally long.

3.3.3. Emulation of Interference Through Models

We now describe how we can use an HandyMote to emulate three major sources of external
interference on the 2.4 GHz ISM band: WiFi and Bluetooth devices, as well as microwave ovens.
We present models that capture the temporal characteristics of these interference sources. A
key requirement is the simplicity and e�ciency of models, as they need to be executed in real-
time on the HandyMotes to generate interference. We are not concerned about the intensity
of the generated interference, since when running a HandyMote in Emulation Mode, we can
decide to adjust the output power of the CC2420 according to di�erent schemes. For example,
the output power can be kept �xed or chosen randomly, as shown in Fig. 3.4 (emulation of the
interference generated by a Whirlpool M440 microwave oven).

Copyright © 2013 RELYonIT consortium: all rights reserved page 32

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
d
f(

X
)

X (clear channel period in ms)

Empirical Model WiFi: Radio Streaming

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

c
d

f(
X

)

X (clear channel period in ms)

Empirical Model WiFi: Large File Download

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
d
f(

X
)

X (clear channel period in ms)

Empirical Model Bluetooth

(a) (b) (c)

Figure 3.5.: Empirical Models for WiFi and Bluetooth.

WiFi Emulation

Modeling Wi-Fi tra�c is challenging, as it depends on several factors such as the number of
active users, their activities, the protocols they use (UDP or TCP), the tra�c conditions in the
backbone, etc. Under some reasonable assumptions, several theoretical studies have analyzed
the performance of 802.11 [6, 26, 32, 38]. However, based on the empirical data we collected, we
observed that the models for saturated sources provide a better approximation than the models
for non-saturated sources (saturated sources always have data to send). Hence, in order to re-
create a realistic representation of interference patterns, we implement an analytical model for
saturated tra�c sources, and for non-saturated tra�c we derive models from empirical data.
Non-Saturated Tra�c: Empirical Model. The empirical model for non-saturated tra�c

is obtained in the following way. Let us denote a random variable X as the clear time between
two consecutive busy times. We obtain the probability mass function p(x) = Pr{X = x} from
the empirical sampling of the channel, where x is the time in number of slots (each slot is 1
ms). The length of the busy times is represented by the transmission delay of packets, which is
a rather deterministic variable (for a �xed packet size). Following the methodology described
on the previous paragraph, we obtained the p(x) for the scenarios presented on Table 3.2.
Figures 3.5(a) and 3.5(b) show the probability mass function p(x) for two WiFi scenarios: an
audio-stream application and the download of a large �le.

Scenario Users Scenario Users
Radio Str. 1 Video Str. 1
File Transfer 1 File + Radio 1

Table 3.2.: Scenarios.

Saturated Tra�c: Analytical Model. There exist several analytical models for the
Distributed Coordination Function (DCF) mode of 802.11. Among them, the model proposed
by Bianchi [6] has been one the most in�uential. Bianchi modeled the DCF mode of 802.11 as a
discrete Markov process, where the back-o� and retransmission mechanisms are represented as
discrete states. Based on this model, Garetto and Chiasserini [26] developed a simpler Markov
process by merging back-o� states. For details, we refer the reader to their paper [26]. In
our work, we use Garetto and Chiasserini's model to emulate WiFi interference for saturated
sources: whenever there are transmissions of frames in the model, the HandyMote activates

Copyright © 2013 RELYonIT consortium: all rights reserved page 33

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

the carrier.

Bluetooth Emulation

IEEE 802.15.1, better known as Bluetooth, speci�es 79 channels, spaced 1 MHz, in the un-
licensed 2.4 GHz ISM band. Bluetooth stack implementations apply an Adaptive Frequency
Hopping (AFH) mechanism to combat interference, which does not permit to anticipate the fre-
quency at which the interference will take place. Bluetooth hops 1600 times/sec., which means
that it remains in a channel for at most 625µs. Note that Bluetooth channels are 1 MHz-spaced,
while the resolution of our scanner is 2 MHz, which implies that consecutive time slots may
eventually coincide within this frequency window and result in a larger interference period. We
model Bluetooth using the same method as for non-saturated tra�c in WiFi, that is, we obtain
the probability density function p(x) for the clear periods of the channel, and the transmission
time of Bluetooth packets for the busy periods. Fig. 3.5(c) shows the probability mass function
p(x) for the Bluetooth scenario. The Adaptive Frequency Hopping characteristic of Bluetooth
leads to a smoother cdf curve compared to WiFi, because the clear periods are independent of
the application run.

Microwave Oven Emulation

Microwave ovens are a kitchen appliance used to cook or warm food by passing non-ionizing
microwave radiations to heat water and other polarized molecules within the food, usually at
a frequency of 2.45 GHz. Therefore, they are a potential source of interference for sensornets
operating in the 2.4 GHz spectrum.
The detailed characteristics of the interference patterns emitted by domestic microwave ovens

depend on the model; nevertheless they all present the same basic properties.
Firstly, on a spectral basis, our experiments show that microwave ovens tend to interfere

all the 802.15.4 channels, with a higher impact on channels 20-26. It is not possible to state
with certainty which channel will be mostly a�ected, as our experiments con�rm that the peak
frequency of the ovens depends on multiple factors, including the oven content, the amount
of water in the food, and the position within the oven, as all these parameters a�ect the
temperature of the magnetron [46].
Secondly, on a temporal basis, the generated noise is rigorously periodic and depends on

the frequency of the AC supply line powering the microwave oven [43]. For example, Fig. 3.6
shows the temporal pattern of the interference caused by a Lunik 200 microwave oven retrieved
experimentally: in one period of approximately 20 ms, there is an 'on' and 'o�' cycle, whose
duration is roughly 10 ms each.
For all the above reasons, microwave oven interference is the simplest dynamic to model, as

it follows a deterministic on/o� sequence. De�ning the period of the signal τ , the duty cycle λ
(fraction of time the oven is 'on'), and hardcoding these two parameters into the HandyMote,
we can generate interference patterns such as the ones shown in Fig. 3.4.

Copyright © 2013 RELYonIT consortium: all rights reserved page 34

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

-100

-80

-60

-40

-20

 0

 0 40 80 120 160 200

R
S

S
I
N

o
is

e
 F

lo
o
r

[d
B

m
]

Time [ms]

Distance 1.0 m
Distance 7.5 m

(a) Zoom out

-100

-80

-60

-40

-20

 0

 0 10 20 30 40 50

R
S

S
I
N

o
is

e
 F

lo
o
r

[d
B

m
]

Time [ms]

OFF
CYCLE

ON
CYCLE

Distance 1.0 m
Distance 7.5 m

(b) Zoom in

Figure 3.6.: Temporal characteristics of the interference caused by microwave ovens. The ovens
emit frequencies with a periodic pattern with period T ≈ 20 ms.

3.4. Testbed Con�guration

As outlined in Section 3.1, we partition the area of a testbed into di�erent cells to deal with the
limited RF output power of the HandyMotes compared to interference sources such as WiFi or
microwave ovens. In this section we explain how to con�gure the testbed, i.e., how to select the
HandyMotes. This implies that every mote should be covered by a cell and cross-talk between
neighboring cells should be minimized (i.e., a HandyMote does not interfere with motes outside
of its cell).

3.4.1. Coverage and Cross-Talk

A key issue we need to understand is under which conditions the packet reception of a mote
is actually a�ected by an interference signal generated by a HandyMote. The impact of inter-
ference on reception in the CC2420 radio is closely dependent on the modulation scheme used,
namely OQPSK (O�set Quadrature Phase Shift Keying) and DSSS (Direct Sequence Spread
Spectrum). With these modulation schemes, the interference signals generated by two Handy-
Motes do not simply �add up� at the receiver as it would be the case for ASK (Amplitude Shift
Keying) used in older radios, but the receiver will pick the stronger of the two signals if their
strength di�ers by a certain minimum. This is called co-channel rejection: according to [44],
the CC2420 is able to receive a signal at -82 dBm if the second signal is at least 3 dB weaker.
In order to enable a HandyMote to interfere with the motes in its cell, we therefore need

to make sure that a mote belonging to the cell will receive interference signals from that
HandyMote with a signal strength at least 3 dB higher than the maximum strength of other
signals that mote may receive. To minimize cross-talk between neighboring cells, we need
to make sure that motes outside of the cell will receive that interference signal with a signal
strength that is at least 3 dB weaker than the minimum strength of other signals that this mote
may receive. Finally, we need to make sure that all testbed motes are covered by the cells.
In practice, an ideal con�guration without cross-talk and with complete coverage typically

Copyright © 2013 RELYonIT consortium: all rights reserved page 35

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

does not exist. Also, due to environmental dynamics, the amount of cross-talk and coverage may
vary over time. We can only try to �nd a con�guration that maximizes coverage and minimizes
cross-talk. Note that there is a tradeo� between the size of the cells and the accuracy of the
spatial distribution of generated interference: the smaller the cells, the higher is the spatial
sampling resolution and the smaller are the cross-talk regions. However, smaller cells also
implies that more HandyMotes are needed to cover the testbed.

3.4.2. A Theoretical Model

In this section we develop a theoretical model that allows us to estimate the radius of a cell such
that a HandyMote can still interfere with all nodes in the cell. We will also model the amount
of cross-talk between neighboring cells. Finally, we develop a model that allows us to estimate
how many HandyMotes are at least needed to cover a testbed deployed over a geographical
area A.
In order to derive the models, we need to make a number of practical assumptions. Firstly,

we assume that the minimum distance between a pair of motes in the testbed equals Dmin

with typical values in the order of few meters. For example, it is common practice to place a
mote in each room on an o�ce �oor. Secondly, we assume that we can reduce the RF output
power level of the testbed motes to a value Pmote below the maximum of 0 dBm (e.g., -10 dBm)
without loosing connectivity. In practice, this is often done to obtain multi-hop topologies with
a large diameter even on the constrained space of an o�ce �oor. Thirdly, we assume that a
mote is only able to receive a packet with a certain minimal signal strength Pmin, with typical
values in the order of -90 dBm. Finally, we assume the signal propagation can be modeled with
the widely used log-normal model [30, 31, 50]:

P (d) = PT − PL(d0)− 10 · η · log10
d

d0
+ χσ (3.1)

where PL(d0) is the path loss measured at reference distance d0, η is the path loss exponent, χσ
is a zero-mean Gaussian random variable with standard deviation σ that models the random
variation of the RSSI value due to shadowing. We use the well-known PL(2) = 46 dBm, and the
typical path loss exponent for indoor environments η = 6 without accounting for shadowing.
Consider the scenario in Fig. 3.7(a) with a HandyMote β and several motes αi. We are

interested in computing the cell radius dβ such that HandyMote β can block the reception of
any message by motes contained in its cell (i.e., α0 and α1 in the �gure). Further, we are
interested in the radius ∆β of the cross-talk region. The cross-talk region is de�ned as the
region where the reception of a message by a mote (i.e., α2 in the �gure) may but need not be
blocked by HandyMote β.
Knowing output power Phandy of the HandyMote and Pmote of the mote, as well as the

minimum distance Dmin between motes, we can compute the maximum RSSI Pmax a mote can
receive from another mote:

Pmax = Pmote − PL(d0)− 10 · η · log10
Dmin

d0
(3.2)

Using that value and the output power Phandy of the HandyMote, we can compute the radius
of the cell dβ as follows:

Copyright © 2013 RELYonIT consortium: all rights reserved page 36

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

(a) (b)

Figure 3.7.: JamLab's division in cells.

dβ = 10
−Pmax+Phandy−PL(d0)+10·η·log10(d0)

10·η (3.3)

Knowing the minimum RSSI Pmin at which a mote can still receive a message, we can compute
the radius of the cross-talk region ∆β as follows:

∆β = 10
−Pmin+Phandy−PL(d0)+10·η·log10(d0)

10·η (3.4)

From that we can compute the di�erence between the cell radius and the radius of the cross-talk
region as Θ = dβ −∆β .
Knowing the cell radius dβ , we now derive a simple model to estimate the number of Handy-

Motes needed to cover a given area A. As illustrated in Fig. 3.7(b), we consider the sparsest-
possible coverage of an area with disks. Ignoring border e�ects, the area covered by a single
cell can be estimated with the area of the hexagon de�ned by the intersection points of one
circle with the six adjacent circles. Dividing A by the area of the hexagon, we can estimate the
number of HandyMotes N needed to cover area A:

N =
A

3∗
√
3

2 ∗ d2β
(3.5)

We now illustrate those model with concrete examples. If we have a sparse testbed with
a distance between nodes of Dmin = 4 meters and transmission powers Pmote = −15 dBm,
Phandy = 0 dBm, we derive Pmax ≈ −80 dBm and the radius of our cells dβ = 8 meters.
This con�guration would imply that the size of the cross-talk area Θ ≈ 4 meters when using
Pmin = −90 dBm.
This cell size is obviously very large, and the consequence would be that in theory only N = 6

HandyMotes would be needed to cover a testbed area A = 750m2.

Copyright © 2013 RELYonIT consortium: all rights reserved page 37

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

However, with this con�guration the cross-talk area Θ is quite large. The accuracy of the
regenerated interference may therefore be low as all nodes contained in cross-talk areas are
potentially interfered by multiple HandyMotes in neighboring cells with di�erent interference
traces. To gain more accuracy, we need to decrease the size of the cross-talk area Θ. This can
be achieved by reducing the radius of the cells by means of reducing Phandy, which requires
more cells and HandyMotes to cover the testbed area. To obtain Θ ≈ 2 meters, using the same
parameters as above, one would need to use a cell radius of dβ ≈ 4 meters, which would imply
that to cover the same testbed area A = 750m2, we would need at least N = 19 HandyMotes.

3.4.3. Automatic Testbed Con�guration

The original JamLab [11] does not provide an automatic approach to select a suitable set
of HandyMotes to enable successful recreation of arbitrary interference patterns. Instead, a
manual step-by-step procedure is used for HandyMote selection. This process is cumbersome
and may lead to a suboptimal selection of HandyMotes.
To simplify the con�guration of JamLab, we propose an automatic selection process that

determines an optimal selection of HandyMotes without manual intervention. The original six
step procedure is replaced by the following procedure:

1. In the �rst step an RSSI reading for each unidirectional link is obtained from the testbed.
The RSSI values are measured by having the motes in the testbed sequentially broadcast
a message and all others nodes record the maximum RSSI value.

2. The resulting measurements are fed to a constraint logic programming solver and an
optimal selection of HandyMotes, which ensures that all regular motes are covered, is
computed.

The resulting con�guration may subsequently be used to program the testbed motes.
To implement this automatic process, we reformulated it as a constrained optimization prob-

lem. The automatic process assumes that a subset of the already installed motes is used as
HandyMotes and no additional modes are deployed. Formally, the resulting constrained opti-
mization problem can be expressed as follows:

minimize ‖J‖
subject to N ∩ J = ∅, (3.6a)

∀n ∈ N∃j ∈ J : neighbor(j, n), (3.6b)

∀n, o ∈ N∃j ∈ J : neighbor(j, n) ∧ neighbor(o, n) (3.6c)

→ rssi(j, n) ≥ rssi(o, n) + 3

with N being the set of regular motes and J being the set of HandyMotes. The rssi(x, y)
function returns the RSSI reading for the directional link between the sender x and the receiver
y in dBm. The neighbor function is de�ned as follows:

neighbor : N ×N → B

(x, y) 7→

{
true rssi(x, y) > −100

false otherwise

Copyright © 2013 RELYonIT consortium: all rights reserved page 38

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

RSSI values of −100 dBm and less are considered to be insu�cient for communication or jam-
ming. Consequently, links with an RSSI value of −100 dBm or less are ignored.
The goal is to utilize as few motes as HandyMotes as possible while still maintaining full

coverage of the testbed. Consequently, we minimize the cardinality of the set of HandyMotes.
While minimizing the number of nodes, we also need to comply with the following set of
constraints:

Constraint 3.6a Each mote can only assume one role at a time and cannot be con�gured as
HandyMote and regular mote at the same time. As a consequence, we require the sets N
and J to be disjunct.

Constraint 3.6b Each node needs to be covered by at least one HandyMote. To ensure coverage
there needs to be a link with an RSSI value of more than −100 dBm from the HandyMote
to the covered regular mote.

Constraint 3.6c One of the HandyMotes in the neighborhood of each regular mote needs to
have a link to the mote with an RSSI value at least 3 dB higher than any other neighbor
to ensure reliable jamming, as described in Sec. 3.4.1.

The optimization problem is implemented in the ECLiPSe Constraint Programming Sys-
tem [1]. The ECLiPSe framework allows to express optimization and constraint satis�ability
problems in a superset of the Prolog programming language. ECLiPSe provides a number of
constraint solver libraries and can interface with several third-party solvers. The ECLiPSe
system can be easily integrated with custom software, nevertheless the current version of the
JamLab con�guration tool is a stand-alone ECLiPSe application.
The current implementation of the JamLab con�guration tool employs the default hybrid

integer/real interval arithmetic constraint solver ic. The branch_and_bound library is used to
implement search.
As a prerequisite to run the automatic con�guration, one needs to empirically record RSSI

measurements for the directional communication between each pair of nodes in the testbed.
The resulting data is converted into a list of Prolog facts that allow to directly query the RSSI
strength for each link between a pair of motes. The selection of HandyMotes is internally
represented by a Binary array and each mote ID is mapped to one position in the array. A
value of 1 at this position indicates that the corresponding mote is selected as a HandyMote.
This representation automatically ensures that Constraint 3.6a is met. Constraint 3.6b is
implemented by summing up the number of HandyMotes in neighborhood of each mote and
ensuring that this sum is greater or equal than one for each neighborhood of a regular mote.
To implement Constraint 3.6c, for each mote the maximal RSSI value of all links between a
HandyMote and this mote is determined. Second, the maximal RSSI value of all links between
a regular mote and this mote is determined. A �nal check ensures that either the node is a
HandyMote itself, in which case the constraint does not need to apply, or the maximal RSSI
received from HandyMotes is more than 2 dB higher than the maximal RSSI receive from any
regular node. After setting up the constraints, the branch-and-bound algorithm is used to
determine the optimal solution with the least possible number of HandyMotes. Finally, the
resulting selection of HandyMotes is returned as a list of mote identi�ers.
The current model does not consider all properties of an ideal solution as outlined in Sec. 3.4.1.

Nevertheless, it allows to create a suitable con�guration with a minimal number of HandyMotes,

Copyright © 2013 RELYonIT consortium: all rights reserved page 39

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

without requiring a cumbersome manual process. Future work could optimize the model and
the resulting con�guration, by also considering cross-talk. In addition, the performance of
solving the optimization problem for very large networks could be improved.

3.5. Evaluation

In this section, we �rst evaluate the accuracy with which a HandyMote can regenerate a pre-
viously recorded interference trace in the time domain. We then compare the packet loss rate
caused by real interferers and compare it to the one caused by the interference produced by
JamLab.

3.5.1. Temporal Accuracy

We evaluate the accuracy with which a HandyMote can regenerate a previously recorded in-
terference in the time domain. We run a HandyMote in regeneration mode in proximity of an
active Lunik 200 microwave oven warming a bowl of tea. The HandyMote is placed at 1 meter
distance from the oven, and records a trace of channel 24 at a sampling rate of 60 kHz.
Fig. 3.8(a) (top) shows the interference generated by the microwave as measured by the

HandyMote. Next, the trace is quantized to single-bit resolution (middle). Finally, once the
microwave oven stopped operating, the HandyMote plays back the recorded binary interference
(bottom) using transmission power 0 dBm. As we can notice from the �gure, the regeneration
is quite accurate in the time domain.
We quantify the accuracy of the regenerated signal with respect to the originally recorded

signal using the the cross-correlation coe�cient (c). We represent original and regenerated
signals by the series x(i) and y(i), respectively, where i = 1, . . . , N . These series are binary,
and take 0 (clear channel) or 1 (busy channel) values. Considering this representation, c is
given by:

c =

∞∑
i=−∞

x(i)y(k − i)

rms(x)rms(y)
(3.7)

where rms() denotes the root mean square value of a signal. We tested eight pairs of original
and regenerated samples and the maximum value of c was selected for each pair:

cxy = max
k∈[−(N−1),(N−1)]

{c} (3.8)

The average correlation cxy is 0.93 with a standard deviation of 0.065. Hence, our implemen-
tation does a commendable job with respect to the cancellation of the jitter between sampled
and regenerated interference and hence regenerates interference with a fairly high accuracy.
We carry out the same experiment using 2-bit quantization with thresholds -55, -70, and

-80 dBm, and we then regenerate the interference using transmission power register levels 31,

Copyright © 2013 RELYonIT consortium: all rights reserved page 40

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

-100

-60

-20

N
o
is

e
 [
d
B

m
]

Real Interference Threshold

 0

 1

M
a
p
p
in

g Current state

-100

-70

-40

 0 10 20 30

N
o
is

e
 [
d
B

m
]

Time [ms]

Regenerated Interference (1-bit)

(a) 1-bit Mapping

-100

-60

-20

N
o
is

e
 [
d
B

m
]

Real Interference Thresholds

 0
 1
 2
 3

M
a
p
p
in

g Current state

-100

-70

-40

 0 10 20 30

N
o
is

e
 [
d
B

m
]

Time [ms]

Regenerated Interference (2-bits)

(b) 2-bit Mapping

Figure 3.8.: Regenerated interference of a microwave oven.

7, and 3 (i.e., 0, -10, -25 dBm), respectively. The results match the above ones with binary
interference. Fig. 3.8(b) shows the regeneration process when using a two-bit quantization.

3.5.2. Impact on Packet Reception Rate

In this section we experimentally study the impact of interference on Packet Reception Rate
(PRR), comparing the PRR for original, emulated, and regenerated interference signals. We
use the same Lunik 200 microwave oven as in the previous experiment, and collect data at the
receiver side of a pair of sensor nodes at about 1 meter distance, with the sender transmitting
packets at a rate of 128 packets/sec. The sensor just transmits the packet without any clear
channel assessments or duty cycling. We place an HandyMote between the two nodes and we
run it both in emulation and regeneration mode, once the microwave oven stopped being active.
We carry out di�erent experiments with di�erent payload sizes, and we run the HandyMote

using transmission power 0 dBm in both emulation and regeneration mode, such that the
generated interference signal blocks communication between the sensor nodes.
Fig. 3.9(a) shows the results. The PRR collected when the microwave oven is active decreases

when the payload size increases as the probability of periodic microwave interference hitting a
packet increases with increasing payload size. The PRR obtained for regenerated interference
di�ers by 5.6% from the original one, hence showing a reasonable accuracy. For emulated
interference, the PRR di�ers from the original one by 12.83%, the reason for that being the
noisy amplitude of the original interference signal as depicted in Fig. 3.4, such that occasionally
the interference is too weak to block the transmission. In contrast, the emulated interference
signal is binary and always blocks communication. Accuracy could be improved in this case by
randomly varying the transmission power of the HandyMote as discussed in Sect. 3.3.3.
We repeat the experiments in presence of Bluetooth interference. We �rst measure PRR

during a Bluetooth �le transfer between a laptop and a mobile phone. We place the HandyMote
between the 2 communicating motes and we measure the PRR obtained with original, emulated,
and regenerated interference. We run the HandyMote in emulation mode using the models
derived in Sect. 3.3.3.
Fig. 3.9(b) shows that the packet reception rate obtained under regenerated interference

Copyright © 2013 RELYonIT consortium: all rights reserved page 41

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Real Regenerated Emulated

P
R

R
 [

%
]

5 bytes payload
30 bytes payload
55 bytes payload

(a) Microwave Oven

 0

 0.2

 0.4

 0.6

 0.8

 1

Real Regenerated Emulated

P
R

R
 [

%
]

(b) Bluetooth

 0

 25

 50

 75

 100

Radio
streaming

Video
streaming

File
transfer

File +
 Radio

P
R

R
 [
%

]

Real Interference
Emulated Interference

(c) WiFi

Figure 3.9.: Impact of real, emulated, and regenerated interference on packet reception rate.

di�ers by 5.02% from the the original one, while in emulation mode it di�ers by only 1.31%.
Finally, we repeat the experiment with WiFi interference. Using the same setup as above, we

run the HandyMote in emulation mode using the models derived in Sect. 3.3.3 while generating
WiFi tra�c from a laptop according to the scenarios presented on Table 3.2.
Figure 3.9(c) shows the results. Also in this case the HandyMote generates interference quite

accurately, and the di�erence between the PRR obtained under real interference and the one
obtained under emulation varies between 0.25% and 8.56%. The reason for this di�erence is
that emulation repeats the same pattern over and over, while actual WiFi interference might
change in time, due, for example, to TCP adaptation mechanisms.

Copyright © 2013 RELYonIT consortium: all rights reserved page 42

4. Conclusions

The ability of a testbed to replay realistic environmental e�ects plays a crucial role for the
investigation of protocol performance. In this deliverable, we have presented the design and
implementation of TempLab and JamLab, two low-cost extensions of sensornet testbeds that
allow to study the impact of temperature and interference on the performance of IoT protocols.
These testbed extensions allow to rerun experiments under identical environmental conditions

and hence play a crucial role for the investigation of protocol performance in WP1 [15, 51] and
WP2 [12]. For example, TempLab has played a fundamental role in identifying and quantifying
the strong impact of temperature on low-power radio communication and capturing precise
platform models [13], whereas JamLab has been used to evaluate the performance of newly
designed protocols [12].

Copyright © 2013 RELYonIT consortium: all rights reserved page 43

A. Source Files

This chapter describes the main software components appended to this document in the source
root directory. After describing the folder hierarchy of the source directory, it guides the reader
towards the content of the di�erent folders.

A.1. Structure of the source Directory

The structure of the source directory, sorted alphabetically, is the following:

� TempLab

� closed_loop_controller

◦ Main.cpp

◦ Make�le

◦ PIController.hpp
◦ start_cl_controller.sh
◦ timeTable.csv

◦ turn_o�.cpp
� open_loop_controller

◦ Main.cpp

◦ Make�le

◦ start_ol_controller.sh
◦ timeTable.csv

� temperature_reading

◦ control_adc.c
◦ control_adc.h
◦ Make�le

◦ project-conf.h
◦ temperature_reading.c

� testbed_scripts

◦ alarm_templab.sh

◦ closing_tty.sh
◦ closing_tty_removing.sh

Copyright © 2013 RELYonIT consortium: all rights reserved page 44

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

◦ starting_tty.sh
◦ starting_tty_forwarding.sh

� JamLab

� emulation

◦ jamlab.c

◦ Make�le

◦ project-conf.h
◦ settings_cc2420_interferer.c
◦ settings_cc2420_interferer.h
◦ settings_cc2420_rssi.c
◦ settings_cc2420_rssi.h
◦ settings_noise�oor_sampling.c

◦ settings_noise�oor_sampling.h

� optimization

◦ input.ecl
◦ opt.ecl

� regeneration

◦ 1bit_regeneration.c
◦ 2bit_regeneration.c
◦ interferer_settings.c
◦ interferer_settings.h
◦ Make�le

◦ project-conf.h
� rssi_collection

◦ automat_testbed.c

◦ java_parser.java
◦ Make�le

◦ project-conf.h
◦ settings_addresses.h
◦ settings_cc2420_rssi.c
◦ settings_cc2420_rssi.h

Copyright © 2013 RELYonIT consortium: all rights reserved page 45

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

A.2. TempLab Source

The TempLab folder contains the code used to implement TempLab's open- and closed-loop
controllers as well as the scripts used to manage the communication with the sensor nodes.

open_loop_controller The open-loop controller is a standalone application implemented us-
ing the open-zwave library, an open-source interface to Z-Wave networks. The main application
program is Main.cpp, that forms the network and varies the intensity of the wireless dimmers
according to a prede�ned dimming level at a given point in time. The �le timeTable.csv con-
tains the dimming levels to which each node in the network should be set. The �le has the
format (time, dimmer ID, dimming level), where time is speci�ed as a string with format �%d
%H:%M:%S�, the dimmer ID is an integer number between 0 and 255, whereas the dimming
level is an integer number in the range [0-99]. The �les Make�le and start_ol_controller.sh are
used to compile and run the controller.

closed_loop_controller To precisely regenerate trace- or model-based temperature pro�les,
TempLab uses a closed-loop proportional-integral (PI) controller that tries to minimize the
di�erence between the desired temperature pro�le and the on-board temperature of the sensor
node of interest. The closed-loop PI controller is a standalone application implemented using
the open-zwave library, an open-source interface to Z-Wave networks. The main application
program is Main.cpp, that forms the network and varies the intensity of the wireless dimmers
according to a desired temperature pro�le at a given point in time. The �le timeTable.csv
contains the desired temperature to which a speci�c node in the network should be set. The
�le has the format (time, dimmer ID, desired temperature), where time is speci�ed as a string
with format �%d %H:%M:%S�, the dimmer ID is an integer number between 0 and 255, whereas
the desired temperature is a �oating point number specifying the desired temperature in Celsius
degree. The �le turn_o�.cpp is an application that turns o� all the lamps in the network and
is used whenever an anomalous behaviour of the PI controller is detected. The �les Make�le
and start_ol_controller.sh are used to compile and run the controller.

temperature_reading TempLab uses an in-band approach using the USB back-channel to
periodically convey temperature readings to the controller. This folder contains the Contiki
code used to measure the temperature on each node in the testbed. This task is carried out
using a low-priority routine executing only when the processor is idle. The main source �le is
temperature_reading.c.

testbed_scripts This folder contains the scripting used to manage the testbed, i.e., auxil-
iary scripts that specify how to read the output from the sensor nodes and to verify that the
temperature on sensor nodes does not exceed prede�ned bounds. The �les starting_tty.sh
and starting_tty_forwarding.sh run a customized version of Contiki's serialdump that reads
the serial output from the nodes and prints it to �le. The �les closing_tty.sh and clos-
ing_tty_removing.sh are used to archive the collected traces for persistent storage. Finally,
the script alarm_templab.sh veri�es that the temperature on sensor nodes does not exceed
prede�ned bounds.

Copyright © 2013 RELYonIT consortium: all rights reserved page 46

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

A.3. JamLab Source

The JamLab folder contains the code used to implement JamLab's (re)generation of interfer-
ence, as well as the code used to derive an automatic testbed con�guration.

emulation This folder contains the code used to let a HandyMote emulate three major sources
of external interference on the 2.4 GHz ISM band: WiFi and Bluetooth devices, as well as
microwave ovens. The main source �le is jamlab.c.

optimization The optimization folder contains code to automatically select a suitable set
of HandyMotes as described in Sec. 3.4.3. The optimization problem is implemented in the
ECLiPSe Constraint Programming System.
As a prerequisite to run the automatic con�guration, one needs to empirically record RSSI

measures for the directional communication between each pair of nodes in the testbed. A
special mote �rmware is used to record these RSSI readings in the testbed (see paragraph
rssi_collection). The results are stored in a simple trace format that can be read by the
ECLiPSe solver to setup a model of the network topology with the help of the input/1 pred-
icate de�ned in the �le input.ecl. Based on this input, an optimal selection of HandyMotes is
computed which employs as little HandyMotes as possible without violating any of the given
constraints.
The actual implementation of the optimization process can be found in the �le opt.ecl. It

employs the default hybrid integer/real interval arithmetic constraint solver ic. The branch_
and_bound library is used to implement search. A suitable selection of HandyMotes can be
generated by calling the main predicate solve/2 and providing the path of a previously recored
trace �le as �rst parameter. The second parameter is uni�ed to a list of the chosen HandyMotes.
A more throughout description of the representation of the optimization problem can be found
in Sec. 3.4.3.

regeneration This folder contains the code used to let a HandyMote measure and replay the
interference recorded in the environment using a quantization of either 1 or 2 bits. The main
source �les are 1bit_regeneration.c and 2bit_regeneration.

rssi_collection This folder contains the code used to capture the RSSI between each pair
of nodes in the testbed. All nodes run a Contiki program automat_testbed.c in which each
node broadcasts packets and computes statistics about the received signals strength from each
neighbour. These statistics are printed on stdout and then parsed by java_parser.java.

Copyright © 2013 RELYonIT consortium: all rights reserved page 47

Bibliography

[1] �The ECLiPSe Constraint Programming System,� http://www.eclipseclp.org/.

[2] A. Jiménez and J.R. Martínez de Dios and J.M. Sánchez-Matamoros and A. Ollero, �Design
of a testbed for cooperation of robots and wireless sensor network,� in Proc. of the 7th

EWSN Conf., Feb. 2010.

[3] ��, �Towards an open testbed for the cooperation of robots and wireless sensor networks,�
in Proc. of the 10th Robotica Conf., Mar. 2010.

[4] N. Baccour, A. Koubâa, L. Mottola, H. Youssef, M. Z. niga, C. Boano, and M. Alves,
�Radio link quality estimation in wireless sensor networks: a survey,� ACM TOSN, vol. 8,
no. 4, Nov. 2012.

[5] K. Bannister, G. Giorgetti, and S. Gupta, �Wireless sensor networking for hot applications:
E�ects of temperature on signal strength, data collection and localization,� in Proc. of the
5th HotEmNets Worksh., Jun. 2008.

[6] G. Bianchi, �Performance analysis of the IEEE 802.11 distributed coordination function,�
IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535�547, 2000.

[7] C. Boano, Z. He, Y. Li, T. Voigt, M. Zúñiga, and A. Willig, �Controllable radio interference
for experimental and testing purposes in wireless sensor networks,� in Proc. of the 4th

SenseApp Worksh., Oct. 2009, pp. 865�872.

[8] C. Boano, K. Römer, Z. He, T. Voigt, M. Zúñiga, and A. Willig, �Generation of Control-
lable Radio Interference for Protocol Testing in Wireless Sensor Networks,� in Proc. of the
7th SenSys Conf., demo session, Nov. 2009, pp. 301�302.

[9] C. Boano, T. Voigt, A. Dunkels, F. Österlind, N. Tsiftes, L. Mottola, and P. Suárez,
�Exploiting the LQI variance for rapid channel quality assessment,� in Proc. of the 8th

IPSN Conf., poster session, Apr. 2009, pp. 369�370.

[10] C. Boano, J. Brown, N. Tsiftes, U. Roedig, and T. Voigt, �The impact of temperature on
outdoor industrial sensornet applications,� IEEE Trans. Ind. Informatics, vol. 6, no. 3, pp.
451�459, Aug. 2010.

[11] C. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúñiga, �JamLab: Augmenting sensornet
testbeds with realistic and controlled interference generation,� in Proc. of the 10th IPSN
Conf., Apr. 2011, pp. 175�186.

[12] C. Boano, M. Zúñiga, K. Römer, and T. Voigt, �JAG: Reliable and predictable wireless
agreement under external radio interference,� in Proc. of the 33th RTSS Conf., Dec. 2012,
pp. 315�326.

Copyright © 2013 RELYonIT consortium: all rights reserved page 48

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

[13] C. Boano, H. Wennerström, M. Zúñiga, J. Brown, C. Keppitiyagama, F. Oppermann,
U. Roedig, L.-Å. Nordén, T. Voigt, and K. Römer, �Hot Packets: A systematic evalua-
tion of the e�ect of temperature on low power wireless transceivers,� in Proc. of the 5th

ExtremeCom Conf., Aug. 2013, pp. 7�12.

[14] C. Boano, M. Zúñiga, J. Brown, U. Roedig, C. Keppitiyagama, and K. Römer, �Templab:
A testbed infrastructure to study the impact of temperature on wireless sensor networks,�
in Under Submission, Oct. 2013.

[15] J. Brown, U. Roedig, M. A. Zúñiga, C. Boano, N. Tsiftes, K. Römer, T. Voigt, and
K. Langendoen, �D-1.2 - report on learning models parameters,� http://www.relyonit.eu/,
RELYonIT: Research by Experimentation for Dependability on the Internet of Things,
Grant Agreement no: 317826, Tech. Rep., Jun. 2013.

[16] A. Chattopadhyay, �Basic RF testing of CCxxxx devices,� Application Report SWRA370,
Aug. 2011.

[17] https://conet.us.es/cms/, CONET Integrated Testbed.

[18] http://sourceforge.net/projects/contikiprojects, The Contiki Projects Community.

[19] http://www.crew-project.eu/, The CREW Project: Cognitive Radio Experimentation
World.

[20] M. Doddavenkatappa, M. Chan, and A. Ananda, �Indriya: A low-cost, 3D wireless sensor
network testbed,� in Proc. of the 7th TridentCom Conf., Apr. 2011, pp. 302�316.

[21] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, �Software-based on-line energy estimation
for sensor nodes,� in Proc. of the 4th EmNetS Worksh., Jun. 2007.

[22] A. Dunkels, Björn Grönvall, and T. Voigt, �Contiki - a lightweight and �exible operating
system for tiny networked sensors,� in Proc. of the 1st EmNetS Worksh., Nov. 2004.

[23] S. Duquennoy, F. Österlind, and A. Dunkels, �Lossy links, low power, high throughput,�
in Proc. of the 9th SenSys Conf., Nov. 2011, pp. 12�25.

[24] E. Ertin, A. Arora, R. Ramnath, M. Sridharan, and V. Kulathumani, �Kansei: A testbed
for sensing at scale,� in Proc. of the 5th IPSN Conf., Apr. 2006, pp. 339�406.

[25] H. Fotouhi, M. Z. niga, M. Alves, A. Koubâa, and P. Marrón, �Smart-HOP: A reliable
hando� mechanism for mobile wireless sensor networks,� in Proc. of the 9th EWSN Conf.,
Feb. 2012, pp. 131�146.

[26] M. Garetto and C. Chiasserini, �Performance analysis of 802.11 WLANs under sporadic
tra�c,� in Proc. of the 4th NETWORKING Conf., May 2005.

[27] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, �TWIST: a scalable and recon�gurable
testbed for wireless indoor experiments with sensor networks,� in Proc. of the 2nd RealMAN
Worksh., May 2006, pp. 63�70.

Copyright © 2013 RELYonIT consortium: all rights reserved page 49

http://www.relyonit.eu/

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

[28] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and J. Lepreau, �Mobile
Emulab: A robotic wireless and sensor network testbed,� in Proc. of the 25th INFOCOM
Conf., Apr. 2006, pp. 1�12.

[29] X. Ju, H. Zhang, and D. Sakamuri, �NetEye: A user-centered wireless sensor network
testbed for high-�delity, robust experimentation,� Int. J. Commun. Syst., vol. 25, no. 9,
pp. 1213�1229, Sep. 2012.

[30] D. Lymberopoulos, Q. Lindsey, and A. Savvides, �An empirical characterization of radio
signal strength variability in 3d IEEE 802.15.4 networks using monopole antennas,� in
Proc. of the 3rd EWSN Conf., Feb. 2006, pp. 326�341.

[31] E. Miluzzo, X. Zheng, K. Fodor, and A. Campbell, �Radio characterization of 802.15.4
and its impact on the design of mobile sensor networks,� in Wireless Sensor Networks,
ser. Lecture Notes in Computer Science, vol. 4913. Springer Berlin/Heidelberg, 2008, pp.
171�188.

[32] R. Musaloiu-E. and A. Terzis, �Minimising the e�ect of WiFi interference in 802.15.4
wireless sensor networks,� International Journal of Sensor Networks (IJSNet), vol. 3, no. 1,
pp. 43�54, Dec. 2007.

[33] H. Packard, �Fundamentals of quartz oscillators,� Application Note 200-2, May 1997.

[34] C. Park, K. Lahiri, and A. Raghunathan, �Battery discharge characteristics of wireless
sensor nodes: An experimental analysis,� in Proc. of the 2nd SECON Conf., Sep. 2005, pp.
430�440.

[35] M. Petrova, L. Wu, P. Mähönen, and J. Riihijärvi, �Interference measurements on perfor-
mance degradation between colocated IEEE 802.11g/n and IEEE 802.15.4 networks,� in
Proc. of the 6th ICN Conf., Apr. 2007, pp. 93�98.

[36] J. Polastre, J. Hill, and D. Culler, �Versatile low power media access for wireless sensor
networks,� in Proc. of the 2nd SenSys Conf., Nov. 2004, pp. 95�107.

[37] D. Puccinelli and S. Giordano, �ViMobiO: Virtual mobility overlay for static sensor network
testbeds,� in Proc. of the 4th EXPonWireless Worksh., Jun. 2009, pp. 1�6.

[38] P. Rathod, O. Dabeer, A. Karandikar, and A. Sahoo, �Characterizing the exit process of
a non-saturated IEEE 802.11 wireless network,� in Proc. of the 10th MobiHoc Conf., May
2009.

[39] T. Schmid, �Time in wireless embedded systems,� Ph.D. dissertation, University of Cali-
fornia, 2009.

[40] A. Sikora and V. Groza, �Coexistence of IEEE 802.15.4 with other systems in the 2.4
GHz-ISM-Band,� in Proc. of the 22th I2MTC Conf., May 2005, pp. 1786�1791.

[41] J. Slipp, C. Ma, N. Polu, J. Nicholson, M. Murillo, and S. Hussain, �WINTeR: Archi-
tecture and applications of a wireless industrial sensor network testbed for radio-harsh
environments,� in Proc. of the 6th CNSR Conf., May 2008, pp. 422�431.

Copyright © 2013 RELYonIT consortium: all rights reserved page 50

RELYonIT
Dependability for the Internet of Things

Prototype of Testbeds with Realistic Environmental E�ects

[42] K. Srinivasan and P. Levis, �RSSI is under appreciated,� in Proc. of the 3rd EmNets
Worksh., May 2006.

[43] T. Taher, M. Misurac, J. LoCicero, and D. Ucci, �Microwave oven signal modelling,� in
Proc. of the IEEE WCNC Conf., Apr. 2008.

[44] CC2420 datasheet - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, Texas Instru-
ments, feb 2013.

[45] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, �Enabling Large-Scale Storage in Sensor
Networks with the Co�ee File System,� in Proc. of the 8th IPSN Conf., Apr. 2009.

[46] M. Vollmer, �Physics of the microwave oven,� in Physics Education 39/1. IOP Publishing
Ltd, 2004, pp. 74�81.

[47] Q. Wang and T. Zhang, �Source tra�c modeling in wireless sensor networks for target
tracking,� in Proc. of the 5th PE-WASUN Symp., Vancouver, Canada, Oct. 2008, pp.
96�100.

[48] H. Wennerström, F. Hermans, O. Rensfelt, C. Rohner, and L.-A. Nordén, �A long-term
study of correlations between meteorological conditions and 802.15.4 link performance,�
in Proc. of the 10th SECON Conf., Jun. 2013.

[49] G. Werner-Allen, P. Swieskowski, and M. Welsh, �MoteLab: a wireless sensor network
testbed,� in Proc. of the 4th IPSN Conf., Apr. 2005, pp. 483�488.

[50] M. Zúñiga and B. Krishnamachari, �Analyzing the transitional region in low-power wireless
links,� in Proc. of the 1st SECON Conf., Oct. 2004, pp. 517�526.

[51] M. Zúñiga, , C. Boano, J. Brown, C. Keppitiyagama, F. Oppermann, P. Alcock, N. Tsiftes,
U. Roedig, K. Römer, T. Voigt, , and K. Langendoen, �D-1.1 - report on environmental and
platform models,� http://www.relyonit.eu/, RELYonIT: Research by Experimentation for
Dependability on the Internet of Things, Grant Agreement no: 317826, Tech. Rep., Jun.
2013.

Copyright © 2013 RELYonIT consortium: all rights reserved page 51

http://www.relyonit.eu/

	Introduction
	TempLab: a Testbed to Study the Impact of Temperature on Wireless Sensor Networks
	Temperature Matters
	Requirements
	Architecture
	Temperature Profiles
	Actuators
	Controller

	Implementation
	Hardware
	Software

	Evaluation
	Heating and Cooling Limits
	Regeneration of Traces

	JamLab: a Testbed to Study the Impact of Radio Interference on Wireless Sensor Networks
	JamLab Overview
	Measuring Interference Accurately Using Motes
	Measuring at High Sampling Rates
	Avoiding Saturation in RSSI Readings

	(Re)Generating Interference
	Recording Interference Traces
	Generating Interference Patterns
	Emulation of Interference Through Models
	WiFi Emulation
	Bluetooth Emulation
	Microwave Oven Emulation

	Testbed Configuration
	Coverage and Cross-Talk
	A Theoretical Model
	Automatic Testbed Configuration

	Evaluation
	Temporal Accuracy
	Impact on Packet Reception Rate

	Conclusions
	Source Files
	Structure of the source Directory
	TempLab Source
	JamLab Source

